School of Biomedical Engineering, Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian, PR China.
Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
J Pathol Clin Res. 2022 Jul;8(4):327-339. doi: 10.1002/cjp2.273. Epub 2022 Apr 28.
This study aimed to explore the prognostic impact of spatial distribution of tumor-infiltrating lymphocytes (TILs) quantified by deep learning (DL) approaches based on digitalized whole-slide images stained with hematoxylin and eosin in patients with colorectal cancer (CRC). The prognostic impact of spatial distributions of TILs in patients with CRC was explored in the Yonsei cohort (n = 180) and validated in The Cancer Genome Atlas (TCGA) cohort (n = 268). Two experienced pathologists manually measured TILs at the most invasive margin (IM) as 0-3 by the Klintrup-Mäkinen (KM) grading method and this was compared to DL approaches. Inter-rater agreement for TILs was measured using Cohen's kappa coefficient. On multivariate analysis of spatial TIL features derived by DL approaches and clinicopathological variables including tumor stage, microsatellite instability, and KRAS mutation, TIL densities within 200 μm of the IM (f_im200) remained the most significant prognostic factor for progression-free survival (PFS) (hazard ratio [HR] 0.004 [95% confidence interval, CI, 0.0001-0.15], p = 0.0028) in the Yonsei cohort. On multivariate analysis using the TCGA dataset, f_im200 retained prognostic significance for PFS (HR 0.031 [95% CI 0.001-0.645], p = 0.024). Inter-rater agreement of manual KM grading was insignificant in the Yonsei (κ = 0.109) and the TCGA (κ = 0.121) cohorts. The survival analysis based on KM grading showed statistically significant different PFS in the TCGA cohort, but not the Yonsei cohort. Automatic quantification of TILs at the IM based on DL approaches shows prognostic utility to predict PFS, and could provide robust and reproducible TIL density measurement in patients with CRC.
本研究旨在探讨基于苏木精和伊红染色的数字化全切片图像,通过深度学习(DL)方法量化肿瘤浸润淋巴细胞(TILs)的空间分布对结直肠癌(CRC)患者的预后影响。在延世队列(n=180)中探讨了 CRC 患者 TIL 空间分布的预后影响,并在癌症基因组图谱(TCGA)队列(n=268)中进行了验证。两名经验丰富的病理学家使用 Klintrup-Mäkinen(KM)分级法在最侵袭性边缘(IM)手动测量 TILs 为 0-3,并与 DL 方法进行了比较。TIL 采用 Cohen's kappa 系数进行组内一致性检验。通过多变量分析,从 DL 方法和临床病理变量中得出空间 TIL 特征,包括肿瘤分期、微卫星不稳定性和 KRAS 突变,IM 内 200μm 内的 TIL 密度(f_im200)仍然是 Yonsei 队列中无进展生存期(PFS)的最重要预后因素(风险比[HR]0.004[95%置信区间,CI,0.0001-0.15],p=0.0028)。在使用 TCGA 数据集的多变量分析中,f_im200 保留了对 PFS 的预后意义(HR 0.031[95%CI 0.001-0.645],p=0.024)。在 Yonsei(κ=0.109)和 TCGA(κ=0.121)队列中,手动 KM 分级的组内一致性不显著。基于 KM 分级的生存分析显示 TCGA 队列的 PFS 存在统计学差异,但 Yonsei 队列没有。基于 DL 方法在 IM 处自动量化 TILs 具有预测 PFS 的预后价值,并可为 CRC 患者提供稳健且可重复的 TIL 密度测量。