Suppr超能文献

IEF-CSNET:用于压缩感知重建的信息增强与融合网络。

IEF-CSNET: Information Enhancement and Fusion Network for Compressed Sensing Reconstruction.

机构信息

College of Information Science & Electronic Engineering, Zhejiang University, Hangzhou 310058, China.

出版信息

Sensors (Basel). 2023 Feb 8;23(4):1886. doi: 10.3390/s23041886.

Abstract

The rapidly growing requirement for data has put forward Compressed Sensing (CS) to realize low-ratio sampling and to reconstruct complete signals. With the intensive development of Deep Neural Network (DNN) methods, performance in image reconstruction from CS measurements is constantly increasing. Currently, many network structures pay less attention to the relevance of before- and after-stage results and fail to make full use of relevant information in the compressed domain to achieve interblock information fusion and a great receptive field. Additionally, due to multiple resamplings and several forced compressions of information flow, information loss and network structure redundancy inevitably result. Therefore, an Information Enhancement and Fusion Network for CS reconstruction (IEF-CSNET) is proposed in this work, and a Compressed Information Extension (CIE) module is designed to fuse the compressed information in the compressed domain and greatly expand the receptive field. The Error Comprehensive Consideration Enhancement (ECCE) module enhances the error image by incorporating the previous recovered error so that the interlink among the iterations can be utilized for better recovery. In addition, an Iterative Information Flow Enhancement (IIFE) module is further proposed to complete the progressive recovery with loss-less information transmission during the iteration. In summary, the proposed method achieves the best effect, exhibits high robustness at this stage, with the peak signal-to-noise ratio (PSNR) improved by 0.59 dB on average under all test sets and sampling rates, and presents a greatly improved speed compared with the best algorithm.

摘要

对数据的需求迅速增长,这就提出了压缩感知 (CS) 来实现低比率采样并重建完整的信号。随着深度神经网络 (DNN) 方法的深入发展,从 CS 测量中重建图像的性能不断提高。目前,许多网络结构对前后阶段结果的相关性关注较少,并且未能充分利用压缩域中的相关信息来实现块间信息融合和大感受野。此外,由于多次重采样和信息流的多次强制压缩,信息丢失和网络结构冗余不可避免。因此,本文提出了一种用于 CS 重建的信息增强和融合网络 (IEF-CSNET),并设计了一个压缩信息扩展 (CIE) 模块,用于融合压缩域中的压缩信息,从而大大扩展感受野。误差综合考虑增强 (ECCE) 模块通过合并以前恢复的误差来增强误差图像,以便利用迭代之间的链接进行更好的恢复。此外,进一步提出了一种迭代信息流增强 (IIFE) 模块,以便在迭代过程中以无损信息传输的方式完成逐步恢复。总之,该方法达到了最佳效果,在所有测试集和采样率下,平均峰值信噪比 (PSNR) 提高了 0.59dB,与最佳算法相比,速度也有了很大的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验