Suppr超能文献

城市峡谷中使用低成本仪器的紧耦合传感器融合和基于预测的 GNSS 周跳探测的定位与姿态确定。

Position and Attitude Determination in Urban Canyon with Tightly Coupled Sensor Fusion and a Prediction-Based GNSS Cycle Slip Detection Using Low-Cost Instruments.

机构信息

Institute for Computer Science and Control, Eötvös Lóránd Research Network, Kende u. 13-17, H-1111 Budapest, Hungary.

Department of Geodesy and Surveying, Faculty of Civil Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3, H-1111 Budapest, Hungary.

出版信息

Sensors (Basel). 2023 Feb 14;23(4):2141. doi: 10.3390/s23042141.

Abstract

We present a position and attitude estimation algorithm of moving platforms based on the tightly coupled sensor fusion of low-cost multi baseline GNSS, inertial, magnetic and barometric observations obtained by low-cost sensors and affordable dual-frequency GNSS receivers. The sensor fusion algorithm is realized by an Extended Kalman Filter and estimates the states including GNSS receiver inter-channel biases, integer ambiguities and non-GNSS receiver biases. Tightly coupled sensor fusion increases the reliability of the position and attitude solution in challenging environments such as urban canyons by utilizing the inertial observations in case of GNSS outage. Moreover, GNSS observations can be efficiently used to mitigate IMU sensor drifts. Standard GNSS cycle slips detection methods, such as the application of triple differences or linear combinations such as Melbourne-Wübbena combination and the phase ionospheric residual extended TurboEdit method. However, these techniques are not well suited for the localization in quickly changing environments such as urban canyons. We present a new method of tightly coupled sensor fusion supported by a prediction based cycle slip detection technique, applied to a GNSS setup using three antennas leading to multiple moving baselines on the platform. Thus, not only the GNSS signal properties but also the dynamics of the moving platform are considered in the cycle slip detection. The developed algorithm is tested in an open-sky validation measurement and two sets of measurement in an urban canyon area. The sensor fusion algorithm processes the data sets using the proposed prediction-based cycle slip method, the loss-of-lock indicator-based, and for comparison, the Melbourne-Wübbena and the TurboEdit cycle slip detection methods are also included. The obtained position and attitude estimation results are compared to the internal solution of raw data source GNSS receivers and to the observations of a high-accuracy GNSS/INS unit including a fiber optic gyro. The validation test confirms the proper cycle slip detection in an ideal environment. The more challenging urban canyon test results show the reliability and the accuracy of the proposed method. In the case of the second urban canyon test, the proposed method improved the integer ambiguity resolution success rate by 19% and these results show the lowest horizontal and vertical coordinate distortion in comparison of the linear combination and the loss-of-lock-based cycle slip methods.

摘要

我们提出了一种基于低成本多基线 GNSS、惯性、磁强和气压观测的紧耦合传感器融合的运动平台位置和姿态估计算法,这些观测由低成本传感器和负担得起的双频 GNSS 接收机获得。传感器融合算法通过扩展卡尔曼滤波器实现,估计包括 GNSS 接收机通道间偏差、整周模糊度和非 GNSS 接收机偏差在内的状态。紧耦合传感器融合通过在 GNSS 中断的情况下利用惯性观测来提高位置和姿态解在城市峡谷等具有挑战性环境中的可靠性。此外,GNSS 观测可有效用于缓解 IMU 传感器漂移。标准的 GNSS 周跳检测方法,如应用三重差分或线性组合,如墨尔本-乌本纳组合和相位电离层残差扩展 TurboEdit 方法。然而,这些技术不适用于城市峡谷等快速变化环境中的定位。我们提出了一种新的紧耦合传感器融合方法,该方法支持基于预测的周跳检测技术,应用于使用三个天线的 GNSS 设置,从而在平台上产生多个移动基线。因此,周跳检测不仅考虑了 GNSS 信号特性,还考虑了运动平台的动态特性。所开发的算法在开阔天空验证测量和城市峡谷区域的两组测量中进行了测试。传感器融合算法使用提出的基于预测的周跳检测方法、基于失锁指示的方法以及用于比较的墨尔本-乌本纳和 TurboEdit 周跳检测方法处理数据集。将获得的位置和姿态估计结果与原始数据源 GNSS 接收机的内部解以及包括光纤陀螺的高精度 GNSS/INS 单元的观测结果进行比较。验证测试在理想环境中确认了适当的周跳检测。更具挑战性的城市峡谷测试结果显示了所提出方法的可靠性和准确性。在第二个城市峡谷测试中,所提出的方法将整周模糊度分辨率成功率提高了 19%,与线性组合和失锁检测方法相比,这些结果显示出最低的水平和垂直坐标失真。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/74b6/9965468/44e03ba3cdfc/sensors-23-02141-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验