Suppr超能文献

通过在复杂城市环境中采用稳健卡尔曼滤波方法和融合惯性导航系统,实现智能手机实时动态定位的分米级精度。

Decimeter-Level Accuracy for Smartphone Real-Time Kinematic Positioning Implementing a Robust Kalman Filter Approach and Inertial Navigation System Infusion in Complex Urban Environments.

作者信息

Pourmina Amir Hossein, Alizadeh Mohamad Mahdi, Schuh Harald

机构信息

Faculty of Geodesy and Geomatics Engineering, K. N. Toosi University of Technology, Tehran 19697, Iran.

German Research Center for Geosciences (GFZ), 14473 Potsdam, Germany.

出版信息

Sensors (Basel). 2024 Sep 11;24(18):5907. doi: 10.3390/s24185907.

Abstract

New smartphones provide real-time access to GNSS pseudorange, Doppler, or carrier-phase measurement data at 1 Hz. Simultaneously, they can receive corrections broadcast by GNSS reference stations to perform real-time kinematic (RTK) positioning. This study aims at the real-time positioning capabilities of smartphones using raw GNSS measurements as a conventional method and proposes an improvement to the positioning through the integration of Inertial Navigation System (INS) measurements. A U-Blox GNSS receiver, model ZED-F9R, was used as a benchmark for comparison. We propose an enhanced ambiguity resolution algorithm that integrates the traditional LAMBDA method with an adaptive thresholding mechanism based on real-time quality metrics. The RTK/INS fusion method integrates RTK and INS measurements using an extended Kalman filter (EKF), where the state vector x includes the position, velocity, orientation, and their respective biases. The innovation here is the inclusion of a real-time weighting scheme that adjusts the contribution of the RTK and INS measurements based on their current estimated accuracy. Also, we use the tightly coupled (TC) RTK/INS fusion framework. By leveraging INS data, the system can maintain accurate positioning even when the GNSS data are unreliable, allowing for the detection and exclusion of abnormal GNSS measurements. However, in complex urban areas such as Qazvin City in Iran, the fusion method achieved positioning accuracies of approximately 0.380 m and 0.415 m for the Xiaomi Mi 8 and Samsung Galaxy S21 Ultra smartphones, respectively. The subsequent detailed analysis across different urban streets emphasized the significance of choosing the right positioning method based on the environmental conditions. In most cases, RTK positioning outperformed Single-Point Positioning (SPP), offering decimeter-level precision, while the fusion method bridged the gap between the two, showcasing improved stability accuracy. The comparative performance between the Samsung Galaxy S21 Ultra and Xiaomi Mi 8 revealed minor differences, likely attributed to variations in the hardware design and software algorithms. The fusion method emerged as a valuable alternative when the RTK signals were unavailable or impractical. This demonstrates the potential of integrating RTK and INS measurements for enhanced real-time smartphone positioning, particularly in challenging urban environments.

摘要

新型智能手机能够以1赫兹的频率实时获取全球导航卫星系统(GNSS)的伪距、多普勒或载波相位测量数据。同时,它们可以接收GNSS参考站广播的校正信息,以进行实时动态(RTK)定位。本研究旨在探讨使用原始GNSS测量作为传统方法时智能手机的实时定位能力,并提出通过集成惯性导航系统(INS)测量来改进定位。采用了型号为ZED-F9R的u-blox GNSS接收机作为比较基准。我们提出了一种增强型模糊度解算算法,该算法将传统的LAMBDA方法与基于实时质量指标的自适应阈值机制相结合。RTK/INS融合方法使用扩展卡尔曼滤波器(EKF)对RTK和INS测量进行融合,其中状态向量x包括位置、速度、方向及其各自的偏差。这里的创新之处在于包含了一种实时加权方案,该方案根据RTK和INS测量的当前估计精度来调整它们的贡献。此外,我们使用紧密耦合(TC)的RTK/INS融合框架。通过利用INS数据,即使GNSS数据不可靠,系统也能保持精确的定位,从而能够检测和排除异常的GNSS测量。然而,在伊朗加兹温市等复杂城市地区,对于小米Mi 8和三星Galaxy S21 Ultra智能手机,融合方法分别实现了约0.380米和0.415米的定位精度。随后在不同城市街道上进行的详细分析强调了根据环境条件选择正确定位方法的重要性。在大多数情况下,RTK定位优于单点定位(SPP),提供分米级精度,而融合方法弥合了两者之间的差距,展示了更高的稳定性精度。三星Galaxy S21 Ultra和小米Mi 8之间的比较性能显示出细微差异,这可能归因于硬件设计和软件算法的不同。当RTK信号不可用或不切实际时,融合方法成为一种有价值的替代方案。这证明了集成RTK和INS测量以增强智能手机实时定位的潜力,特别是在具有挑战性的城市环境中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c13/11435990/6636802d7c01/sensors-24-05907-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验