Alvi Sulaiman, Bauer Christian W, Nachman Benjamin
Department of Physics, University of California, Berkeley, CA 94720 USA.
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 USA.
J High Energy Phys. 2023;2023(2):220. doi: 10.1007/JHEP02(2023)220. Epub 2023 Feb 22.
We explore the use of Quantum Machine Learning (QML) for anomaly detection at the Large Hadron Collider (LHC). In particular, we explore a semi-supervised approach in the four-lepton final state where simulations are reliable enough for a direct background prediction. This is a representative task where classification needs to be performed using small training datasets - a regime that has been suggested for a quantum advantage. We find that Classical Machine Learning (CML) benchmarks outperform standard QML algorithms and are able to automatically identify the presence of anomalous events injected into otherwise background-only datasets.
我们探索将量子机器学习(QML)用于大型强子对撞机(LHC)的异常检测。具体而言,我们在四轻子末态中探索一种半监督方法,在这种情况下,模拟对于直接的背景预测足够可靠。这是一个具有代表性的任务,其中需要使用小训练数据集进行分类——这是一种已被认为可实现量子优势的情况。我们发现经典机器学习(CML)基准的表现优于标准QML算法,并且能够自动识别注入到仅包含背景数据集的异常事件的存在。