Department of Mathematics, University of Bristol, Bristol, BS8 1TW, United Kingdom.
Phys Rev Lett. 2009 Oct 9;103(15):150502. doi: 10.1103/PhysRevLett.103.150502. Epub 2009 Oct 7.
Solving linear systems of equations is a common problem that arises both on its own and as a subroutine in more complex problems: given a matrix A and a vector b(-->), find a vector x(-->) such that Ax(-->) = b(-->). We consider the case where one does not need to know the solution x(-->) itself, but rather an approximation of the expectation value of some operator associated with x(-->), e.g., x(-->)(dagger) Mx(-->) for some matrix M. In this case, when A is sparse, N x N and has condition number kappa, the fastest known classical algorithms can find x(-->) and estimate x(-->)(dagger) Mx(-->) in time scaling roughly as N square root(kappa). Here, we exhibit a quantum algorithm for estimating x(-->)(dagger) Mx(-->) whose runtime is a polynomial of log(N) and kappa. Indeed, for small values of kappa [i.e., poly log(N)], we prove (using some common complexity-theoretic assumptions) that any classical algorithm for this problem generically requires exponentially more time than our quantum algorithm.
求解线性方程组是一个常见的问题,它不仅自身存在,而且作为更复杂问题的子程序也会出现:给定一个矩阵 A 和一个向量 b(--->),找到一个向量 x(--->),使得 Ax(--->)= b(--->)。我们考虑这样一种情况,即不需要知道解 x(--->)本身,而是需要估计与 x(--->)相关的某个算符的期望值,例如,对于某个矩阵 M,有 x(--->)(dagger)Mx(--->)。在这种情况下,当 A 是稀疏的、N x N 且条件数为 kappa 时,最快的已知经典算法可以在时间复杂度大致为 N 平方根(kappa)的情况下找到 x(--->)并估计 x(-->)(dagger)Mx(--->)。在这里,我们展示了一种用于估计 x(-->)(dagger)Mx(--->)的量子算法,其运行时间是 log(N)和 kappa 的多项式。实际上,对于小的 kappa 值(即 poly log(N)),我们证明(使用一些常见的复杂性理论假设),对于这个问题的任何经典算法,通常都需要比我们的量子算法多指数级的时间。