Suppr超能文献

使用内在大脑活动变异性和机器学习预测双相情感障碍的自杀倾向。

Prediction of suicidality in bipolar disorder using variability of intrinsic brain activity and machine learning.

机构信息

Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.

Laboratory for Artificial Intelligence in Medical Imaging (LAIMI), Nanjing Medical University, Nanjing, China.

出版信息

Hum Brain Mapp. 2023 May;44(7):2767-2777. doi: 10.1002/hbm.26243. Epub 2023 Feb 27.

Abstract

Bipolar disorder (BD) is associated with marked suicidal susceptibility, particularly during a major depressive episode. However, the evaluation of suicidal risk remains challenging since it relies mainly on self-reported information from patients. Hence, it is necessary to complement neuroimaging features with advanced machine learning techniques in order to predict suicidal behavior in BD patients. In this study, a total of 288 participants, including 75 BD suicide attempters, 101 BD nonattempters and 112 healthy controls, underwent a resting-state functional magnetic resonance imaging (rs-fMRI). Intrinsic brain activity was measured by amplitude of low-frequency fluctuation (ALFF). We trained and tested a two-level k-nearest neighbors (k-NN) model based on resting-state variability of ALFF with fivefold cross-validation. BD suicide attempters had increased dynamic ALFF values in the right anterior cingulate cortex, left thalamus and right precuneus. Compared to other machine learning methods, our proposed framework had a promising performance with 83.52% accuracy, 78.75% sensitivity and 87.50% specificity. The trained models could also replicate and validate the results in an independent cohort with 72.72% accuracy. These findings based on a relatively large data set, provide a promising way of combining fMRI data with machine learning technique to reliably predict suicide attempt at an individual level in bipolar depression. Overall, this work might enhance our understanding of the neurobiology of suicidal behavior by detecting clinically defined disruptions in the dynamics of instinct brain activity.

摘要

双相情感障碍(BD)与明显的自杀倾向有关,尤其是在重度抑郁发作期间。然而,评估自杀风险仍然具有挑战性,因为它主要依赖于患者的自我报告信息。因此,有必要将神经影像学特征与先进的机器学习技术相结合,以便预测 BD 患者的自杀行为。在这项研究中,共 288 名参与者,包括 75 名 BD 自杀未遂者、101 名 BD 未自杀者和 112 名健康对照者,接受了静息态功能磁共振成像(rs-fMRI)检查。通过低频波动幅度(ALFF)测量大脑的固有活动。我们使用五折交叉验证,基于 ALFF 的静息状态变异性,训练和测试了一个两级 k-最近邻(k-NN)模型。BD 自杀未遂者的右侧前扣带皮层、左侧丘脑和右侧楔前叶的动态 ALFF 值增加。与其他机器学习方法相比,我们提出的框架具有很有前途的性能,准确率为 83.52%,灵敏度为 78.75%,特异性为 87.50%。在一个独立的队列中,经过 72.72%的准确率训练的模型也可以复制和验证结果。这些基于较大数据集的发现为结合 fMRI 数据和机器学习技术以可靠地预测个体水平的双相抑郁自杀尝试提供了一种很有前途的方法。总的来说,这项工作可能通过检测到本能大脑活动的临床定义的破坏,增强我们对自杀行为的神经生物学的理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验