Vachon Philippe, Merugu Srinivas, Sharma Jaibir, Lal Amit, Ng Eldwin J, Koh Yul, Lee Joshua E-Y, Lee Chengkuo
Institute of Microelectronics, A*STAR, Singapore.
Department of Electrical and Computer Engineering, National University of Singapore, Singapore.
Lab Chip. 2023 Mar 28;23(7):1865-1878. doi: 10.1039/d2lc01192a.
Precision manipulation techniques in microfluidics often rely on ultrasonic actuators to generate displacement and pressure fields in a liquid. However, strategies to enhance and confine the acoustofluidic forces often work against miniaturization and reproducibility in fabrication. This study presents microfabricated piezoelectric thin film membranes made silicon diffusion for guided flexural wave generation as promising acoustofluidic actuators with low frequency, voltage, and power requirements. The guided wave propagation can be dynamically controlled to tune and confine the induced acoustofluidic radiation force and streaming. This provides for highly localized dynamic particle manipulation functionalities such as multidirectional transport, patterning, and trapping. The device combines the advantages of microfabrication and advanced acoustofluidic capabilities into a miniature "drop-and-actuate" chip that is mechanically robust and features a high degree of reproducibility for large-scale production. The membrane acoustic waveguide actuators offer a promising pathway for acoustofluidic applications such as biosensing, organoid production, and analyte transport.
微流控中的精密操纵技术通常依靠超声致动器在液体中产生位移和压力场。然而,增强和限制声流体力的策略往往不利于制造过程中的小型化和可重复性。本研究展示了通过硅扩散制成的微纳加工压电薄膜膜片,用于产生引导弯曲波,作为具有低频、低电压和低功率要求的有前景的声流控致动器。引导波的传播可以动态控制,以调节和限制感应的声流辐射力和流动。这提供了高度局部化的动态粒子操纵功能,如多向传输、图案化和捕获。该装置将微纳加工的优势和先进的声流控能力结合到一个微型“滴加并驱动”芯片中,该芯片机械坚固,具有高度的可重复性,适合大规模生产。膜声波导致动器为生物传感、类器官生产和分析物传输等声流控应用提供了一条有前景的途径。