Vachon Philippe, Merugu Srinivas, Sharma Jaibir, Lal Amit, Ng Eldwin J, Koh Yul, Lee Joshua E-Y, Lee Chengkuo
Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore.
Institute of Microelectronics, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
Microsyst Nanoeng. 2024 Mar 8;10:33. doi: 10.1038/s41378-023-00643-8. eCollection 2024.
This article presents an in-depth exploration of the acoustofluidic capabilities of guided flexural waves (GFWs) generated by a membrane acoustic waveguide actuator (MAWA). By harnessing the potential of GFWs, cavity-agnostic advanced particle manipulation functions are achieved, unlocking new avenues for microfluidic systems and lab-on-a-chip development. The localized acoustofluidic effects of GFWs arising from the evanescent nature of the acoustic fields they induce inside a liquid medium are numerically investigated to highlight their unique and promising characteristics. Unlike traditional acoustofluidic technologies, the GFWs propagating on the MAWA's membrane waveguide allow for cavity-agnostic particle manipulation, irrespective of the resonant properties of the fluidic chamber. Moreover, the acoustofluidic functions enabled by the device depend on the flexural mode populating the active region of the membrane waveguide. Experimental demonstrations using two types of particles include in-sessile-droplet particle transport, mixing, and spatial separation based on particle diameter, along with streaming-induced counter-flow virtual channel generation in microfluidic PDMS channels. These experiments emphasize the versatility and potential applications of the MAWA as a microfluidic platform targeted at lab-on-a-chip development and showcase the MAWA's compatibility with existing microfluidic systems.
本文深入探讨了由薄膜声波导致动器(MAWA)产生的引导弯曲波(GFW)的声流体功能。通过利用GFW的潜力,实现了与腔体无关的先进粒子操纵功能,为微流体系统和芯片实验室的发展开辟了新途径。对GFW在液体介质中诱导的声场的倏逝性质所产生的局部声流体效应进行了数值研究,以突出其独特且有前景的特性。与传统声流体技术不同,在MAWA的薄膜波导上传播的GFW允许进行与腔体无关的粒子操纵,而与流体腔室的共振特性无关。此外,该装置实现的声流体功能取决于填充在薄膜波导有源区域的弯曲模式。使用两种类型粒子的实验演示包括无液滴粒子传输、混合以及基于粒径的空间分离,以及在微流体聚二甲基硅氧烷(PDMS)通道中由流动诱导的逆流虚拟通道生成。这些实验强调了MAWA作为一个针对芯片实验室发展的微流体平台的多功能性和潜在应用,并展示了MAWA与现有微流体系统的兼容性。