Hunan Provincial Key Laboratory of Low-Dimensional Structural Physics & Devices, School of Physics and Electronics, Hunan University, Changsha 410082, China.
School of Physics and Optoelectronics, Xiangtan University, Xiangtan 411105, China.
Phys Chem Chem Phys. 2023 Mar 8;25(10):7519-7526. doi: 10.1039/d2cp06058b.
Carrier mobility in titanium dioxide (TiO) systems is a key factor for their application as energy materials, especially in solar cells and lithium-ion batteries. Studies on the diffusion of Li-ions and polarons in rutile TiO systems have attracted extensive attention. However, how their interaction affects the diffusion of Li-ions and electron polarons is largely unclear and related studies are relatively lacking. By using first-principles calculations, we systematically investigate the interaction between the intercalated Li-ions and electron polarons in rutile TiO materials. Our analysis shows that the diffusion barrier of the electron polarons decreases around the Li-ion. The interaction between the Li-ions and polarons would benefit their synergistic diffusion both in the pristine and defective rutile TiO systems. Our study reveals the synergistic effects between the ions and polarons, which is important for understanding the carrier properties in TiO systems and in further improving the performance of energy materials.
在钛 二氧化物(TiO)系统中,载体迁移率是将其用作能源材料的关键因素,特别是在太阳能电池和锂离子电池中。关于锂离子和极化子在金红石 TiO 系统中的扩散的研究引起了广泛关注。然而,它们之间的相互作用如何影响锂离子和电子极化子的扩散在很大程度上还不清楚,相关研究也相对较少。通过使用第一性原理计算,我们系统地研究了金红石 TiO 材料中插层锂离子和电子极化子之间的相互作用。我们的分析表明,电子极化子的扩散势垒在锂离子周围降低。锂离子和极化子之间的相互作用有利于它们在原始和缺陷金红石 TiO 系统中的协同扩散。我们的研究揭示了离子和极化子之间的协同效应,这对于理解 TiO 系统中的载流子性质以及进一步提高能源材料的性能非常重要。