Department of Chemistry, Binghamton University, Binghamton, United States.
Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, United States.
Elife. 2023 Mar 1;12:e83464. doi: 10.7554/eLife.83464.
Excitatory amino acid transporter 1 (EAAT1) is a glutamate transporter belonging to the SLC1 family of solute carriers. It plays a key role in the regulation of the extracellular glutamate concentration in the mammalian brain. The structure of EAAT1 was determined in complex with UCPH-101, apotent, non-competitive inhibitor of EAAT1. Alanine serine cysteine transporter 2 (ASCT2) is a neutral amino acid transporter, which regulates pools of amino acids such as glutamine between intracellular and extracellular compartments . ASCT2 also belongs to the SLC1 family and shares 58% sequence similarity with EAAT1. However, allosteric modulation of ASCT2 via non-competitive inhibitors is unknown. Here, we explore the UCPH-101 inhibitory mechanisms of EAAT1 and ASCT2 by using rapid kinetic experiments. Our results show that UCPH-101 slows substrate translocation rather than substrate or Na binding, confirming a non-competitive inhibitory mechanism, but only partially inhibits wild-type ASCT2. Guided by computational modeling using ligand docking and molecular dynamics simulations, we selected two residues involved in UCPH-101/EAAT1 interaction, which were mutated in ASCT2 (F136Y, I237M, F136Y/I237M) in the corresponding positions. We show that in the F136Y/I237M double-mutant transporter, 100% of the inhibitory effect of UCPH-101 could be restored, and the apparent affinity was increased ( = 4.3 μM), much closer to the EAAT1 value of 0.6 μM. Finally, we identify a novel non-competitive ASCT2 inhibitor, through virtual screening and experimental testing against the allosteric site, further supporting its localization. Together, these data indicate that the mechanism of allosteric modulation is conserved between EAAT1 and ASCT2. Due to the difference in binding site residues between ASCT2 and EAAT1, these results raise the possibility that more potent, and potentially selective ASCT2 allosteric inhibitors can be designed .
兴奋性氨基酸转运体 1(EAAT1)是一种谷氨酸转运体,属于溶质载体家族 SLC1。它在调节哺乳动物大脑细胞外谷氨酸浓度方面起着关键作用。EAAT1 的结构与 UCPH-101 复合物一起被确定,UCPH-101 是一种有效的非竞争性 EAAT1 抑制剂。丙氨酸-丝氨酸-半胱氨酸转运体 2(ASCT2)是一种中性氨基酸转运体,它调节细胞内和细胞外隔室之间的氨基酸(如谷氨酰胺)池。ASCT2 也属于 SLC1 家族,与 EAAT1 有 58%的序列相似性。然而,通过非竞争性抑制剂对 ASCT2 的变构调节尚不清楚。在这里,我们通过快速动力学实验研究了 UCPH-101 对 EAAT1 和 ASCT2 的抑制机制。我们的结果表明,UCPH-101 通过减缓底物转运而不是底物或 Na 结合来减慢底物转运,从而证实了非竞争性抑制机制,但仅部分抑制野生型 ASCT2。在使用配体对接和分子动力学模拟进行计算建模的指导下,我们选择了两个涉及 UCPH-101/EAAT1 相互作用的残基,这些残基在 ASCT2 中相应位置发生突变(F136Y、I237M、F136Y/I237M)。我们表明,在 F136Y/I237M 双突变转运体中,UCPH-101 的 100%抑制作用可以恢复,并且表观亲和力增加(=4.3 μM),更接近 EAAT1 的 0.6 μM 值。最后,我们通过虚拟筛选和针对变构位点的实验测试鉴定出一种新型非竞争性 ASCT2 抑制剂,进一步支持其定位。总之,这些数据表明变构调节的机制在 EAAT1 和 ASCT2 之间是保守的。由于 ASCT2 和 EAAT1 之间结合位点残基的差异,这些结果提出了设计更有效、潜在更具选择性的 ASCT2 变构抑制剂的可能性。