Suppr超能文献

观察谷氨酸转运体分子动力学模拟中的自发加速底物结合。

Observing spontaneous, accelerated substrate binding in molecular dynamics simulations of glutamate transporters.

机构信息

Department of Chemistry, Binghamton University, Binghamton, New York, United States of America.

出版信息

PLoS One. 2021 Apr 23;16(4):e0250635. doi: 10.1371/journal.pone.0250635. eCollection 2021.

Abstract

Glutamate transporters are essential for removing the neurotransmitter glutamate from the synaptic cleft. Glutamate transport across the membrane is associated with elevator-like structural changes of the transport domain. These structural changes require initial binding of the organic substrate to the transporter. Studying the binding pathway of ligands to their protein binding sites using molecular dynamics (MD) simulations requires micro-second level simulation times. Here, we used three methods to accelerate aspartate binding to the glutamate transporter homologue Gltph and to investigate the binding pathway. 1) Two methods using user-defined forces to prevent the substrate from diffusing too far from the binding site. 2) Conventional MD simulations using very high substrate concentrations in the 0.1 M range. The final, substrate bound states from these methods are comparable to the binding pose observed in crystallographic studies, although they show more flexibility in the side chain carboxylate function. We also captured an intermediate on the binding pathway, where conserved residues D390 and D394 stabilize the aspartate molecule. Finally, we investigated glutamate binding to the mammalian glutamate transporter, excitatory amino acid transporter 1 (EAAT1), for which a crystal structure is known, but not in the glutamate-bound state. Overall, the results obtained in this study reveal new insights into the pathway of substrate binding to glutamate transporters, highlighting intermediates on the binding pathway and flexible conformational states of the side chain, which most likely become locked in once the hairpin loop 2 closes to occlude the substrate.

摘要

谷氨酸转运体对于从突触间隙中清除神经递质谷氨酸至关重要。跨膜的谷氨酸转运与转运结构域的电梯样结构变化有关。这些结构变化需要有机底物与转运体的初始结合。使用分子动力学 (MD) 模拟研究配体与其蛋白结合位点的结合途径需要微秒级别的模拟时间。在这里,我们使用三种方法来加速天冬氨酸与谷氨酸转运体同源物 Gltph 的结合,并研究结合途径。1)两种方法使用用户定义的力来防止底物从结合位点扩散得太远。2)使用非常高的底物浓度(0.1 M 范围内)进行常规 MD 模拟。这些方法的最终底物结合态与晶体学研究中观察到的结合构象相当,尽管它们在侧链羧酸功能上表现出更多的灵活性。我们还捕获了结合途径中的一个中间体,其中保守残基 D390 和 D394 稳定天冬氨酸分子。最后,我们研究了已知晶体结构但未结合谷氨酸的哺乳动物谷氨酸转运体,兴奋性氨基酸转运体 1 (EAAT1) 的谷氨酸结合情况。总的来说,本研究的结果揭示了底物与谷氨酸转运体结合途径的新见解,突出了结合途径中的中间体和侧链的柔性构象状态,一旦发夹环 2 关闭以阻止底物,这些状态很可能被锁定。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc58/8064580/faa003ea4520/pone.0250635.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验