Opt Lett. 2023 Mar 1;48(5):1204-1207. doi: 10.1364/OL.482852.
Surface-enhanced Raman spectroscopy (SERS) has enabled single nanoparticle Raman sensing with abundant applications in analytical chemistry, biomaterials, and environmental monitoring. Genuine single particle Raman sensing requires a cumbersome technique, such as atomic force microscopy (AFM) based tip-enhanced Raman spectroscopy; SERS-based single particle Raman sensing still collects an ensemble signal that samples, in principle, a number of particles. Here, we develop in situ Raman-coupled optical tweezers, based on a hybrid nanostructure consisting of a single bowtie aperture surrounded by bull's eye rings, to trap and excite a rhodamine-6G-dye-doped polystyrene sphere. We simulated a platform to ensure sufficient enhancement capability for both optical trapping and SERS of a single nanoparticle. Experiments with well-designed controls clearly attribute the Raman signal origin to a single 15-nm particle trapped at the center of a nanohole, and they also clarified the trapping and Raman enhancement role of the bull's eye rings. We claim Raman sensing of a smallest optically trapped particle.
表面增强拉曼光谱(SERS)使得单颗粒拉曼传感成为可能,在分析化学、生物材料和环境监测中有丰富的应用。真正的单颗粒拉曼传感需要一种繁琐的技术,如基于原子力显微镜(AFM)的尖端增强拉曼光谱;基于 SERS 的单颗粒拉曼传感仍然采集的是一个集合信号,原则上可以对多个颗粒进行采样。在这里,我们开发了基于混合纳米结构的原位 Raman 耦合光镊,该结构由单个蝴蝶结孔径周围的牛眼环组成,用于捕获和激发罗丹明 6G 染料掺杂的聚苯乙烯球。我们模拟了一个平台,以确保光学捕获和单个纳米颗粒的 SERS 都具有足够的增强能力。精心设计的对照实验清楚地表明,拉曼信号来源于被捕获在纳米孔中心的单个 15nm 颗粒,同时也澄清了牛眼环的捕获和拉曼增强作用。我们声称对最小的光捕获颗粒进行了拉曼传感。