Suppr超能文献

从音响层次到后验概率作为弱化的度量:西班牙语塞音的案例。

From sonority hierarchy to posterior probability as a measure of lenition: The case of Spanish stops.

机构信息

Department of English Language and Linguistics, Institute of English and American Studies, Heinrich-Heine-University, Düsseldorf, 40225, Germany.

Department of Linguistics, University of Florida, Gainesville, Florida, 32611-5454, USA.

出版信息

J Acoust Soc Am. 2023 Feb;153(2):1191. doi: 10.1121/10.0017247.

Abstract

A deep learning Phonet model was evaluated as a method to measure lenition. Unlike quantitative acoustic methods, recurrent networks were trained to recognize the posterior probabilities of sonorant and continuant phonological features in a corpus of Argentinian Spanish. When applied to intervocalic and post-nasal voiced and voiceless stops, the approach yielded lenition patterns similar to those previously reported. Further, additional patterns also emerged. The results suggest the validity of the approach as an alternative or addition to quantitative acoustic measures of lenition.

摘要

一个深度学习的语音模型被评估为一种测量弱化的方法。与定量声学方法不同,递归网络被训练来识别阿根廷西班牙语语料库中响音和延续音音系特征的后验概率。当应用于元音间和鼻音后的浊音和清音塞音时,该方法产生的弱化模式与先前报道的相似。此外,还出现了其他模式。结果表明,该方法作为弱化的定量声学测量的替代或补充是有效的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验