Suppr超能文献

DeltaMSI:基于人工智能的下一代测序数据微卫星不稳定性评分建模。

DeltaMSI: artificial intelligence-based modeling of microsatellite instability scoring on next-generation sequencing data.

机构信息

Department of Laboratory Medicine, AZ Delta General Hospital, Deltalaan 1, 8800, Roeselare, Belgium.

RADar Innovation Center, AZ Delta General Hospital, Roeselare, Belgium.

出版信息

BMC Bioinformatics. 2023 Mar 1;24(1):73. doi: 10.1186/s12859-023-05186-3.

Abstract

BACKGROUND

DNA mismatch repair deficiency (dMMR) testing is crucial for detection of microsatellite unstable (MSI) tumors. MSI is detected by aberrant indel length distributions of microsatellite markers, either by visual inspection of PCR-fragment length profiles or by automated bioinformatic scoring on next-generation sequencing (NGS) data. The former is time-consuming and low-throughput while the latter typically relies on simplified binary scoring of a single parameter of the indel distribution. The purpose of this study was to use machine learning to process the full complexity of indel distributions and integrate it into a robust script for screening of dMMR on small gene panel-based NGS data of clinical tumor samples without paired normal tissue.

METHODS

Scikit-learn was used to train 7 models on normalized read depth data of 36 microsatellite loci in a cohort of 133 MMR proficient (pMMR) and 46 dMMR tumor samples, taking loss of MLH1/MSH2/PMS2/MSH6 protein expression as reference method. After selection of the optimal model and microsatellite panel the two top-performing models per locus (logistic regression and support vector machine) were integrated into a novel script (DeltaMSI) for combined prediction of MSI status on 28 marker loci at sample level. Diagnostic performance of DeltaMSI was compared to that of mSINGS, a widely used script for MSI detection on unpaired tumor samples. The robustness of DeltaMSI was evaluated on 1072 unselected, consecutive solid tumor samples in a real-world setting sequenced using capture chemistry, and 116 solid tumor samples sequenced by amplicon chemistry. Likelihood ratios were used to select result intervals with clinical validity.

RESULTS

DeltaMSI achieved higher robustness at equal diagnostic power (AUC = 0.950; 95% CI 0.910-0.975) as compared to mSINGS (AUC = 0.876; 95% CI 0.823-0.918). Its sensitivity of 90% at 100% specificity indicated its clinical potential for high-throughput MSI screening in all tumor types. Clinical Trial Number/IRB B1172020000040, Ethical Committee, AZ Delta General Hospital.

摘要

背景

DNA 错配修复缺陷(dMMR)检测对于检测微卫星不稳定(MSI)肿瘤至关重要。MSI 通过微卫星标记物的异常插入缺失长度分布来检测,要么通过 PCR 片段长度谱的直观检查,要么通过下一代测序(NGS)数据的自动生物信息学评分来检测。前者耗时且通量低,而后者通常依赖于对插入缺失分布的单个参数进行简化的二进制评分。本研究的目的是使用机器学习处理插入缺失分布的全部复杂性,并将其整合到一个稳健的脚本中,用于在没有配对正常组织的基于小基因panel 的 NGS 临床肿瘤样本中筛选 dMMR。

方法

使用 Scikit-learn 在 133 例 MMR 功能正常(pMMR)和 46 例 dMMR 肿瘤样本的 36 个微卫星位点的归一化读深数据上训练 7 个模型,以 MLH1/MSH2/PMS2/MSH6 蛋白表达缺失作为参考方法。在选择最佳模型和微卫星面板后,对每个位点表现最好的两个模型(逻辑回归和支持向量机)进行整合,形成一个新的脚本(DeltaMSI),用于在样本水平上对 28 个标记位点的 MSI 状态进行联合预测。DeltaMSI 的诊断性能与广泛用于非配对肿瘤样本 MSI 检测的 mSINGS 脚本进行了比较。在真实环境中,使用捕获化学法对 1072 个未选择的连续实体肿瘤样本和 116 个实体肿瘤样本进行了测序,并使用扩增子化学法对其进行了测序,评估了 DeltaMSI 的稳健性。使用似然比选择具有临床有效性的结果间隔。

结果

与 mSINGS(AUC=0.876;95%CI 0.823-0.918)相比,DeltaMSI 在具有相同诊断效能(AUC=0.950;95%CI 0.910-0.975)的情况下具有更高的稳健性。其 100%特异性时的 90%敏感性表明其在所有肿瘤类型中具有高通量 MSI 筛选的临床潜力。临床试验编号/IRB B1172020000040,伦理委员会,AZ Delta 综合医院。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c27f/9976396/75bc90fdd6e4/12859_2023_5186_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验