Suppr超能文献

三类异宿环共存与一类 3D 分段仿射系统的混沌分析

Coexistence of three heteroclinic cycles and chaos analyses for a class of 3D piecewise affine systems.

机构信息

School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China.

Department of Engineering Mechanics, School of Civil Engineering and Architecture, Guangxi University, Nanning 530004, Guangxi, China.

出版信息

Chaos. 2023 Feb;33(2):023108. doi: 10.1063/5.0132018.

Abstract

Our objective is to investigate the innovative dynamics of piecewise smooth systems with multiple discontinuous switching manifolds. This paper establishes the coexistence of heteroclinic cycles in a class of 3D piecewise affine systems with three switching manifolds through rigorous mathematical analysis. By constructing suitable Poincaré maps adjacent to heteroclinic cycles, we demonstrate the occurrence of two distinct types of horseshoes and show the conditions for the presence of chaotic invariant sets. A family of attractors that satisfy the criteria are presented using this technique. It is shown that the outcomes of numerical simulation accurately reflect those of our theoretical results.

摘要

我们的目标是研究具有多个不连续切换流形的分段光滑系统的创新动态。本文通过严格的数学分析,建立了一类具有三个切换流形的三维分段仿射系统中异宿环的共存性。通过构造与异宿环相邻的合适的 Poincaré 映射,我们证明了两种不同类型的马蹄铁的存在,并给出了混沌不变集存在的条件。利用这一技术提出了一类满足准则的吸引子。数值模拟的结果准确地反映了我们的理论结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验