Suppr超能文献

忆阻神经元及其对外电场的适应性。

A memristive neuron and its adaptability to external electric field.

机构信息

College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China.

School of Mathematics and Statistics, Shandong Normal University, Ji'nan 250014, China.

出版信息

Chaos. 2023 Feb;33(2):023110. doi: 10.1063/5.0136195.

Abstract

Connecting memristors into any neural circuit can enhance its potential controllability under external physical stimuli. Memristive current along a magnetic flux-controlled memristor can estimate the effect of electromagnetic induction on neural circuits and neurons. Here, a charge-controlled memristor is incorporated into one branch circuit of a simple neural circuit to estimate the effect of an external electric field. The field energy kept in each electric component is respectively calculated, and equivalent dimensionless energy function H is obtained to discern the firing mode dependence on the energy from capacitive, inductive, and memristive channels. The electric field energy H in a memristive channel occupies the highest proportion of Hamilton energy H, and neurons can present chaotic/periodic firing modes because of large energy injection from an external electric field, while bursting and spiking behaviors emerge when magnetic field energy H holds maximal proportion of Hamilton energy H. The memristive current is modified to control the firing modes in this memristive neuron accompanying with a parameter shift and shape deformation resulting from energy accommodation in the memristive channel. In the presence of noisy disturbance from an external electric field, stochastic resonance is induced in the memristive neuron. Exposed to stronger electromagnetic field, the memristive component can absorb more energy and behave as a signal source for energy shunting, and negative Hamilton energy is obtained for this neuron. The new memristive neuron model can address the main physical properties of biophysical neurons, and it can further be used to explore the collective behaviors and self-organization in networks under energy flow and noisy disturbance.

摘要

将忆阻器连接到任何神经电路中都可以增强其在外部物理刺激下的潜在可控性。沿磁通控制忆阻器的忆阻电流可以估计电磁感应对神经电路和神经元的影响。在这里,将一个电荷控制忆阻器合并到一个简单神经电路的分支电路中,以估计外部电场的影响。分别计算每个电气元件中存储的场能,并获得等效无量纲能量函数 H,以辨别触发模式对来自电容、电感和忆阻通道的能量的依赖性。忆阻通道中的电场能量 H 在哈密顿能量 H 中占据最高比例,并且由于外部电场的大量能量注入,神经元可以呈现混沌/周期性的发射模式,而当磁场能量 H 占据最大比例的哈密顿能量 H 时,会出现爆发和尖峰行为。忆阻电流被修改以控制该忆阻神经元中的发射模式,同时由于忆阻通道中的能量容纳导致参数移位和形状变形。在外电场的噪声干扰下,忆阻神经元中会产生随机共振。在更强的电磁场作用下,忆阻器元件可以吸收更多的能量,并充当能量分流的信号源,并且该神经元具有负的哈密顿能量。这种新的忆阻神经元模型可以解决生物物理神经元的主要物理性质,并且可以进一步用于在能量流动和噪声干扰下探索网络中的集体行为和自组织。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验