Suppr超能文献

从偏振激光雷达测量中反演大气气溶胶微物理属性的方法。

Method for retrieving range-resolved aerosol microphysical properties from polarization lidar measurements.

出版信息

Opt Express. 2023 Feb 27;31(5):7599-7616. doi: 10.1364/OE.481252.

Abstract

Aerosol microphysical properties, such as volume concentration (VC) and effective radius (ER), are of great importance to evaluate their radiative forcing and impacts on climate change. However, range-resolved aerosol VC and ER still cannot be obtained by remote sensing currently except for the column-integrated one from sun-photometer observation. In this study, a retrieval method of range-resolved aerosol VC and ER is firstly proposed based on the partial least squares regression (PLSR) and deep neural networks (DNN), combining polarization lidar and collocated AERONET (AErosol RObotic NETwork) sun-photometer observations. The results show that the measurement of widely-used polarization lidar can be reasonably used to derive the aerosol VC and ER, with the determination coefficient (R) of 0.89 (0.77) for VC (ER) by use of the DNN method. Moreover, it is proven that the lidar-based height-resolved VC and ER at near-surface are well consistent with independent observations of collocated Aerodynamic Particle Sizer (APS). Additionally, we found that there are significant diurnal and seasonal variations of aerosol VC and ER in the atmosphere at Semi-Arid Climate and Environment Observatory of Lanzhou University (SACOL). Compared with columnar ones from the sun-photometer observation, this study provides a reliable and practical way to obtain full-day range-resolved aerosol VC and ER from widely-used polarization lidar observation, even under cloud conditions. Moreover, this study also can be applied to long-term observations by current ground-based lidar networks and spaceborne CALIPSO lidar, aiming to further evaluate aerosol climatic effects more accurately.

摘要

气溶胶微观物理特性,如体积浓度 (VC) 和有效半径 (ER),对于评估其辐射强迫和对气候变化的影响非常重要。然而,目前除了太阳光度计观测得到的柱积分值外,还无法通过遥感手段获得逐点气溶胶 VC 和 ER。本研究首次提出了一种基于偏最小二乘回归 (PLSR) 和深度神经网络 (DNN) 的逐点气溶胶 VC 和 ER 反演方法,结合了偏振激光雷达和共置的 AERONET (AErosol RObotic NETwork) 太阳光度计观测。结果表明,广泛使用的偏振激光雷达的测量值可以合理地用于推导气溶胶 VC 和 ER,DNN 方法的 VC (ER) 决定系数 (R) 为 0.89 (0.77)。此外,证明了近地表基于激光雷达的高度分辨 VC 和 ER 与共置的空气动力学粒径谱仪 (APS) 的独立观测结果高度一致。此外,我们发现兰州大学半干旱气候与环境野外站 (SACOL) 大气中的气溶胶 VC 和 ER 存在明显的日变化和季节变化。与太阳光度计观测的柱状值相比,本研究提供了一种可靠实用的方法,可从广泛使用的偏振激光雷达观测中获得全天逐点气溶胶 VC 和 ER,即使在有云的情况下也是如此。此外,本研究还可应用于当前基于地面的激光雷达网络和星载 CALIPSO 激光雷达的长期观测,旨在更准确地评估气溶胶气候效应。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验