Opt Express. 2023 Feb 27;31(5):8257-8266. doi: 10.1364/OE.479182.
Multipartite Einstein-Podolsky-Rosen (EPR) steering is a key resource in a quantum network. Although EPR steering between spatially separated regions of ultracold atomic systems has been observed, deterministic manipulation of steering between distant quantum network nodes is required for a secure quantum communication network. Here, we propose a feasible scheme to deterministically generate, store, and manipulate one-way EPR steering between distant atomic cells by a cavity-enhanced quantum memory approach. While optical cavities effectively suppress the unavoidable noises in electromagnetically induced transparency, three atomic cells are in a strong Greenberger-Horne-Zeilinger state by faithfully storing three spatially separated entangled optical modes. In this way, the strong quantum correlation of atomic cells guarantees one-to-two node EPR steering is achieved, and can perserve the stored EPR steering in these quantum nodes. Furthermore, the steerability can be actively manipulated by the temperature of the atomic cell. This scheme provides the direct reference for experimental implementation for one-way multipartite steerable states, which enables an asymmetric quantum network protocol.
多体爱因斯坦-波多尔斯基-罗森(EPR)导引是量子网络中的关键资源。虽然已经观察到超冷原子系统的空间分离区域之间的 EPR 导引,但对于安全的量子通信网络,需要在远程量子网络节点之间进行确定性的导引操作。在这里,我们提出了一种可行的方案,通过腔增强量子存储方法来确定性地产生、存储和操纵远程原子单元之间的单向 EPR 导引。虽然光学腔有效地抑制了电磁感应透明中不可避免的噪声,但通过忠实存储三个空间分离的纠缠光模式,三个原子单元处于强的格林伯格-霍恩-泽林格态。通过这种方式,原子单元的强量子相关性保证了一对二节点的 EPR 导引得以实现,并能保持这些量子节点中存储的 EPR 导引。此外,导引能力可以通过原子单元的温度来主动控制。该方案为单向多体可控态的实验实现提供了直接参考,从而实现了非对称量子网络协议。