Key Laboratory for UV Light-Emitting Materials and Technology (Northeast Normal University), Ministry of Education, 5268 Renmin Street, Changchun, 130024, P. R. China.
Adv Sci (Weinh). 2023 May;10(13):e2300030. doi: 10.1002/advs.202300030. Epub 2023 Mar 2.
Auditory motion perception is one crucial capability to decode and discriminate the spatiotemporal information for neuromorphic auditory systems. Doppler frequency-shift feature and interaural time difference (ITD) are two fundamental cues of auditory information processing. In this work, the functions of azimuth detection and velocity detection, as the typical auditory motion perception, are demonstrated in a WO -based memristive synapse. The WO memristor presents both the volatile mode (M1) and semi-nonvolatile mode (M2), which are capable of implementing the high-pass filtering and processing the spike trains with a relative timing and frequency shift. In particular, the Doppler frequency-shift information processing for velocity detection is emulated in the WO memristor based auditory system for the first time, which relies on a scheme of triplet spike-timing-dependent-plasticity in the memristor. These results provide new opportunities for the mimicry of auditory motion perception and enable the auditory sensory system to be applied in future neuromorphic sensing.
听觉运动感知是解码和区分神经形态听觉系统时空信息的关键能力。多普勒频移特征和耳间时间差(ITD)是听觉信息处理的两个基本线索。在这项工作中,基于 WO 的忆阻器突触中展示了方位检测和速度检测这两种典型的听觉运动感知功能。WO 忆阻器呈现出易失性模式(M1)和半非易失性模式(M2),能够实现高通滤波并处理具有相对定时和频率偏移的尖峰序列。特别地,首次在基于 WO 忆阻器的听觉系统中模拟了速度检测的多普勒频移信息处理,这依赖于忆阻器中三脉冲时相关可塑性的方案。这些结果为听觉运动感知的模拟提供了新的机会,并使听觉传感系统能够应用于未来的神经形态传感。