基于神经形态器件的柔性人工感官系统

Flexible Artificial Sensory Systems Based on Neuromorphic Devices.

作者信息

Sun Fuqin, Lu Qifeng, Feng Simin, Zhang Ting

机构信息

i -Lab, Key Laboratory of Multifunctional Nanomaterials and Smart Systems, Suzhou Institute of Nano-Tech and Nano-Bionics (SINANO), Chinese Academy of Sciences (CAS), 398 Ruoshui Road, Suzhou 215123, P. R. China.

School of Nano Technology and Nano Bionics, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, P. R. China.

出版信息

ACS Nano. 2021 Mar 23;15(3):3875-3899. doi: 10.1021/acsnano.0c10049. Epub 2021 Jan 28.

Abstract

Emerging flexible artificial sensory systems using neuromorphic electronics have been considered as a promising solution for processing massive data with low power consumption. The construction of artificial sensory systems with synaptic devices and sensing elements to mimic complicated sensing and processing in biological systems is a prerequisite for the realization. To realize high-efficiency neuromorphic sensory systems, the development of artificial flexible synapses with low power consumption and high-density integration is essential. Furthermore, the realization of efficient coupling between the sensing element and the synaptic device is crucial. This Review presents recent progress in the area of neuromorphic electronics for flexible artificial sensory systems. We focus on both the recent advances of artificial synapses, including device structures, mechanisms, and functions, and the design of intelligent, flexible perception systems based on synaptic devices. Additionally, key challenges and opportunities related to flexible artificial perception systems are examined, and potential solutions and suggestions are provided.

摘要

使用神经形态电子学的新兴柔性人工感官系统被认为是一种以低功耗处理海量数据的有前景的解决方案。构建具有突触器件和传感元件的人工感官系统以模拟生物系统中复杂的传感和处理过程是实现这一目标的先决条件。为了实现高效的神经形态感官系统,开发具有低功耗和高密度集成的人工柔性突触至关重要。此外,传感元件与突触器件之间高效耦合的实现也至关重要。本综述介绍了用于柔性人工感官系统的神经形态电子学领域的最新进展。我们既关注人工突触的最新进展,包括器件结构、机制和功能,也关注基于突触器件的智能柔性感知系统的设计。此外,还探讨了与柔性人工感知系统相关的关键挑战和机遇,并提供了潜在的解决方案和建议。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索