Wang Jing, Fan Shiying, Li Xinyong, Niu Zhaodong, Liu Zhiyuan, Bai Chunpeng, Duan Jun, Tadé Moses O, Liu Shaomin
State Key Laboratory of Fine Chemicals, Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, P. R. China.
Department of Chemical Engineering, Curtin University, P.O. Box U1987, Perth, Western Australia 6845, Australia.
ACS Appl Mater Interfaces. 2023 Mar 15;15(10):12915-12923. doi: 10.1021/acsami.2c19134. Epub 2023 Mar 2.
Dichloromethane (CHCl) hydrodechlorination to methane (CH) is a promising approach to remove the halogenated contaminants and generate clean energy. In this work, rod-like nanostructured CuCoO spinels with rich oxygen vacancies are designed for highly efficient electrochemical reduction dechlorination of dichloromethane. Microscopy characterizations revealed that the special rod-like nanostructure and rich oxygen vacancies can efficiently enhance surface area, electronic/ionic transport, and expose more active sites. The experimental tests demonstrated that CuCoO-3 with rod-like nanostructures outperformed other morphology of CuCoO spinel nanostructures in catalytic activity and product selectivity. The highest methane production of 148.84 μmol in 4 h with a Faradaic efficiency of 21.61% at -2.94 V (vs SCE) is shown. Furthermore, the density function theory proved oxygen vacancies significantly decreased the energy barrier to promote the catalyst in the reaction and O-Cu was the main active site in dichloromethane hydrodechlorination. This work explores a promising way to synthesize the highly efficient electrocatalysts, which may be an effective catalyst for dichloromethane hydrodechlorination to methane.
二氯甲烷(CH₂Cl₂)加氢脱氯生成甲烷(CH₄)是去除卤代污染物并产生清洁能源的一种很有前景的方法。在这项工作中,设计了具有丰富氧空位的棒状纳米结构CuCo₂O₄尖晶石用于二氯甲烷的高效电化学还原脱氯。显微镜表征表明,特殊的棒状纳米结构和丰富的氧空位能够有效地增加表面积、促进电子/离子传输并暴露出更多活性位点。实验测试表明,具有棒状纳米结构的CuCo₂O₄-3在催化活性和产物选择性方面优于其他形态的CuCo₂O₄尖晶石纳米结构。在-2.94 V(相对于饱和甘汞电极)下,4小时内最高甲烷产量为148.84 μmol,法拉第效率为21.61%。此外,密度泛函理论证明氧空位显著降低了反应的能垒,促进了催化剂的反应,并且O-Cu是二氯甲烷加氢脱氯的主要活性位点。这项工作探索了一种合成高效电催化剂的有前景的方法,这可能是二氯甲烷加氢脱氯生成甲烷的有效催化剂。