Samani Adrienne, Karuppasamy Muthukumar, English Katherine G, Siler Colin A, Wang Yimin, Widrick Jeffrey J, Alexander Matthew S
Department of Pediatrics, Division of Neurology at the University of Alabama at Birmingham and Children's of Alabama, Birmingham, AL 35294.
Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
bioRxiv. 2023 Feb 27:2023.02.22.529576. doi: 10.1101/2023.02.22.529576.
DOCK (dedicator of cytokinesis) is an 11-member family of typical guanine nucleotide exchange factors (GEFs) expressed in the brain, spinal cord, and skeletal muscle. Several DOCK proteins have been implicated in maintaining several myogenic processes such as fusion. We previously identified DOCK3 as being strongly upregulated in Duchenne muscular dystrophy (DMD), specifically in the skeletal muscles of DMD patients and dystrophic mice. Dock3 ubiquitous KO mice on the dystrophin-deficient background exacerbated skeletal muscle and cardiac phenotypes. We generated Dock3 conditional skeletal muscle knockout mice (Dock3 mKO) to characterize the role of DOCK3 protein exclusively in the adult muscle lineage. Dock3 mKO mice presented with significant hyperglycemia and increased fat mass, indicating a metabolic role in the maintenance of skeletal muscle health. Dock3 mKO mice had impaired muscle architecture, reduced locomotor activity, impaired myofiber regeneration, and metabolic dysfunction. We identified a novel DOCK3 interaction with SORBS1 through the C-terminal domain of DOCK3 that may account for its metabolic dysregulation. Together, these findings demonstrate an essential role for DOCK3 in skeletal muscle independent of DOCK3 function in neuronal lineages.
DOCK(胞质分裂 dedicator)是一个由11个成员组成的典型鸟嘌呤核苷酸交换因子(GEF)家族,在脑、脊髓和骨骼肌中表达。几种DOCK蛋白与维持多种成肌过程(如融合)有关。我们之前发现DOCK3在杜氏肌营养不良症(DMD)中强烈上调,特别是在DMD患者和营养不良小鼠的骨骼肌中。肌营养不良蛋白缺陷背景下的Dock3全身敲除小鼠加剧了骨骼肌和心脏表型。我们构建了Dock3条件性骨骼肌敲除小鼠(Dock3 mKO),以专门研究DOCK3蛋白在成年肌肉谱系中的作用。Dock3 mKO小鼠出现显著的高血糖和脂肪量增加,表明其在维持骨骼肌健康方面具有代谢作用。Dock3 mKO小鼠的肌肉结构受损、运动活性降低、肌纤维再生受损以及代谢功能障碍。我们通过DOCK3的C末端结构域鉴定了一种与SORBS1的新型DOCK3相互作用,这可能解释了其代谢失调。总之,这些发现证明了DOCK3在骨骼肌中的重要作用,独立于其在神经谱系中的功能。