Suppr超能文献

内皮细胞机制可使炎症诱导的高通透性失活。

Endothelial mechanisms for inactivation of inflammation-induced hyperpermeability.

机构信息

Department of Pharmacology, Physiology and Neuroscience, Rutgers New Jersey Medical School, Newark, New Jersey, United States.

Department of Pharmacology, Physiology and Neuroscience, School of Graduate Studies, Rutgers, The State University of New Jersey, Newark, New Jersey, United States.

出版信息

Am J Physiol Heart Circ Physiol. 2023 May 1;324(5):H610-H623. doi: 10.1152/ajpheart.00543.2022. Epub 2023 Mar 3.

Abstract

Microvascular hyperpermeability is a hallmark of inflammation. Many negative effects of hyperpermeability are due to its persistence beyond what is required for preserving organ function. Therefore, we propose that targeted therapeutic approaches focusing on mechanisms that terminate hyperpermeability would avoid the negative effects of prolonged hyperpermeability while retaining its short-term beneficial effects. We tested the hypothesis that inflammatory agonist signaling leads to hyperpermeability and initiates a delayed cascade of cAMP-dependent pathways that causes inactivation of hyperpermeability. We applied platelet-activating factor (PAF) and vascular endothelial growth factor (VEGF) to induce hyperpermeability. We used an Epac1 agonist to selectively stimulate exchange protein activated by cAMP (Epac1) and promote inactivation of hyperpermeability. Stimulation of Epac1 inactivated agonist-induced hyperpermeability in the mouse cremaster muscle and in human microvascular endothelial cells (HMVECs). PAF induced nitric oxide (NO) production and hyperpermeability within 1 min and NO-dependent increased cAMP concentration in about 15-20 min in HMVECs. PAF triggered phosphorylation of vasodilator-stimulated phosphoprotein (VASP) in a NO-dependent manner. Epac1 stimulation promoted cytosol-to-membrane eNOS translocation in HMVECs and in myocardial microvascular endothelial (MyEnd) cells from wild-type mice, but not in MyEnd cells from VASP knockout mice. We demonstrate that PAF and VEGF cause hyperpermeability and stimulate the cAMP/Epac1 pathway to inactivate agonist-induced endothelial/microvascular hyperpermeability. Inactivation involves VASP-assisted translocation of eNOS from the cytosol to the endothelial cell membrane. We demonstrate that hyperpermeability is a self-limiting process, whose timed inactivation is an intrinsic property of the microvascular endothelium that maintains vascular homeostasis in response to inflammatory conditions. Termination of microvascular hyperpermeability has been so far accepted to be a passive result of the removal of the applied proinflammatory agonists. We provide in vivo and in vitro evidence that ) inactivation of hyperpermeability is an actively regulated process, ) proinflammatory agonists (PAF and VEGF) stimulate microvascular hyperpermeability and initiate endothelial mechanisms that terminate hyperpermeability, and ) eNOS location-translocation is critical in the activation-inactivation cascade of endothelial hyperpermeability.

摘要

微血管通透性增加是炎症的一个标志。通透性增加的许多负面影响是由于其持续时间超过了维持器官功能所必需的时间。因此,我们提出,针对终止通透性增加的机制的靶向治疗方法将避免通透性持续时间延长的负面影响,同时保留其短期有益效果。我们测试了这样一个假设,即炎症激动剂信号导致通透性增加,并引发 cAMP 依赖性途径的延迟级联反应,导致通透性失活。我们应用血小板激活因子 (PAF) 和血管内皮生长因子 (VEGF) 来诱导通透性增加。我们使用 Epac1 激动剂来选择性地刺激 cAMP 激活的交换蛋白 (Epac1),并促进通透性失活。在小鼠提睾肌和人微血管内皮细胞 (HMVEC) 中,Epac1 的刺激使激动剂诱导的通透性失活。PAF 在 1 分钟内诱导一氧化氮 (NO) 产生和通透性增加,在 15-20 分钟内在 HMVEC 中诱导 NO 依赖性的 cAMP 浓度增加。PAF 以 NO 依赖的方式诱导血管扩张刺激磷蛋白 (VASP) 的磷酸化。Epac1 刺激促进了 HMVEC 中以及来自野生型小鼠的心肌微血管内皮 (MyEnd) 细胞中的 eNOS 从细胞质到细胞膜的易位,但在来自 VASP 敲除小鼠的 MyEnd 细胞中则没有。我们证明 PAF 和 VEGF 导致通透性增加,并刺激 cAMP/Epac1 途径使激动剂诱导的内皮/微血管通透性失活。失活涉及 eNOS 从细胞质到内皮细胞膜的 VASP 辅助易位。我们证明通透性增加是一个自我限制的过程,其时间依赖性失活是微血管内皮的固有特性,可维持血管在炎症条件下的内稳态。微血管通透性的终止迄今为止被认为是去除应用的促炎激动剂的被动结果。我们提供了体内和体外证据,表明 ) 通透性失活是一个主动调节的过程, ) 促炎激动剂 (PAF 和 VEGF) 刺激微血管通透性增加,并启动终止通透性增加的内皮机制,和 ) eNOS 位置易位是内皮通透性激活-失活级联反应的关键。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c739/10069978/f4db523bdf3b/h-00543-2022r01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验