School of Water Resources and Environment & Key Laboratory of Groundwater Conservation of MWR, China University of Geosciences (Beijing), Beijing 100083, China.
Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing 100037, China.
Sci Total Environ. 2023 May 20;874:162524. doi: 10.1016/j.scitotenv.2023.162524. Epub 2023 Mar 1.
Anthropogenic nitrogen (N) input has led to elevated levels of nitrate nitrogen (NO-N) in the groundwater. However, insights into the responses of the microbial community and its N metabolic functionality to elevated NO-N in suburban groundwater are still limited. Here, we explored the microbial taxonomy, N metabolic attributes, and their responses to NO-N pollution in groundwaters from Chaobai River catchment (CR) and Huai River catchment (HR) in Beijing, China. Results showed that average NO-N and NH-N concentrations in CR groundwater were 1.7 and 3.0 folds of those in HR. NO-N was the dominant nitrogen specie both in HR and CR groundwater (over 80 %). Significantly different structures and compositions of the microbial communities and N cycling gene profiles were found between CR groundwater and HR groundwater (p < 0.05), with CR groundwater harboring significantly lower microbial richness and abundance of N metabolic genes. However, denitrification was the dominant microbial N cycling process in both CR and HR groundwater. Strong associations among NO-N, NH-N, microbial taxonomic, and N functional attributes were found (p < 0.05), suggesting denitrifiers and Candidatus_Brocadia might serve as potential featured biomarkers for the elevated NO-N and NH-N concentration in groundwater. Path analysis further revealed the significant effect of NO-N on the overall microbial N functionality and microbial denitrification (p < 0.05). Collectively, our results provide field evidence that elevated levels of NO-N and NH-N under different hydrogeologic conditions had a significant effect on the microbial taxonomic and N functional attributes in groundwater, with potential implications for improving sustainable N management and risk assessment of groundwater.
人为氮(N)输入导致地下水硝酸盐氮(NO-N)水平升高。然而,人们对微生物群落及其 N 代谢功能对郊区地下水中升高的 NO-N 的响应的了解仍然有限。在这里,我们探索了来自中国北京潮白河集水区(CR)和淮河集水区(HR)的地下水中的微生物分类、N 代谢特性及其对 NO-N 污染的响应。结果表明,CR 地下水的平均 NO-N 和 NH-N 浓度分别是 HR 地下水的 1.7 和 3.0 倍。NO-N 是 HR 和 CR 地下水中占主导地位的氮物种(超过 80%)。CR 地下水和 HR 地下水之间的微生物群落和 N 循环基因谱结构和组成存在显著差异(p < 0.05),CR 地下水的微生物丰富度和 N 代谢基因丰度明显较低。然而,反硝化是 CR 和 HR 地下水中占主导地位的微生物 N 循环过程。NO-N、NH-N、微生物分类和 N 功能属性之间存在强烈的关联(p < 0.05),表明反硝化菌和 Candidatus_Brocadia 可能作为地下水中升高的 NO-N 和 NH-N 浓度的潜在特征生物标志物。路径分析进一步表明,NO-N 对整体微生物 N 功能和微生物反硝化作用有显著影响(p < 0.05)。总的来说,我们的结果提供了实地证据,表明在不同水文地质条件下升高的 NO-N 和 NH-N 水平对地下水的微生物分类和 N 功能属性有显著影响,这对改善地下水的可持续 N 管理和风险评估具有潜在意义。