Yang Zhaoxun, Acker Sarah M, Brady Adam R, Rodríguez Armando Arenazas, Paredes Lino Morales, Ticona Juana, Mariscal Giuliana Romero, Vanzin Gary F, Ranville James F, Sharp Jonathan O
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America; Center for Mining Sustainability, United States of America.
Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States of America.
Sci Total Environ. 2023 Jun 10;876:162478. doi: 10.1016/j.scitotenv.2023.162478. Epub 2023 Mar 5.
Nature-based solutions offer a sustainable alternative to labor and chemical intensive engineered treatment of metal-impaired waste streams. Shallow, unit process open water (UPOW) constructed wetlands represent a novel design where benthic photosynthetic microbial mats (biomat) coexist with sedimentary organic matter and inorganic (mineral) phases, creating an environment for multiple-phase interactions with soluble metals. To query the interplay of dissolved metals with inorganic and organic fractions, biomat was harvested from two distinct systems: the demonstration-scale UPOW within the Prado constructed wetlands complex ("Prado biomat", 88 % inorganic) and a smaller pilot-scale system ("Mines Park (MP) biomat", 48 % inorganic). Both biomats accumulated detectable background concentrations of metals of toxicological concern (Zn, Cu, Pb, and Ni) by assimilation from waters that did not exceed regulatory thresholds for these metals. Augmentation in laboratory microcosms with a mixture of these metals at ecotoxicologically relevant concentrations revealed a further capacity for metal removal (83-100 %). Experimental concentrations encapsulated the upper range of surface waters in the metal-impaired Tambo watershed in Peru, where a passive treatment technology such as this could be applied. Sequential extractions demonstrated that metal removal by mineral fractions is more important in Prado than MP biomat, possibly due to a higher proportion and mass of iron and other minerals from Prado-derived materials. Geochemical modeling using PHREEQC suggests that in addition to sorption/surface complexation of metals to mineral phases (modeled as iron (oxyhydr)oxides), diatom and bacterial functional groups (carboxyl, phosphoryl, and silanol) also play an important role in soluble metal removal. By comparing sequestered metal phases across these biomats with differing inorganic content, we propose that sorption/surface complexation and incorporation/assimilation of both inorganic and organic constituents of the biomat play a dominant role in metal removal potential by UPOW wetlands. This knowledge could be applied to passively treat metal impaired waters in analogous and remote regions.
基于自然的解决方案为金属污染废水的人工和化学强化处理提供了一种可持续的替代方案。浅层、单元工艺开放水域(UPOW)人工湿地是一种新颖的设计,其中底栖光合微生物垫(生物膜)与沉积的有机物质和无机(矿物)相共存,为与可溶性金属的多相相互作用创造了环境。为了探究溶解态金属与无机和有机组分之间的相互作用,从两个不同的系统中采集了生物膜:普拉多人工湿地综合体中的示范规模UPOW(“普拉多生物膜”,88%为无机成分)和一个较小的试点规模系统(“矿山公园(MP)生物膜”,48%为无机成分)。两种生物膜都通过从未超过这些金属监管阈值的水体中吸收,积累了可检测到的具有毒理学意义的金属背景浓度(锌、铜、铅和镍)。在实验室微观环境中用这些金属的生态毒理学相关浓度混合物进行强化实验,结果表明生物膜具有进一步的金属去除能力(83 - 100%)。实验浓度涵盖了秘鲁受金属污染的坦博流域地表水的上限范围,在该地区可以应用这种被动处理技术。连续萃取表明,矿物组分对金属的去除在普拉多生物膜中比在MP生物膜中更为重要,这可能是由于来自普拉多材料的铁和其他矿物的比例和质量更高。使用PHREEQC进行的地球化学建模表明,除了金属与矿物相的吸附/表面络合作用(建模为铁(氢)氧化物)外,硅藻和细菌的官能团(羧基、磷酰基和硅烷醇)在可溶性金属去除中也起着重要作用。通过比较这些无机含量不同的生物膜中固定的金属相,我们提出生物膜的无机和有机成分的吸附/表面络合以及掺入/吸收在UPOW湿地的金属去除潜力中起主导作用。这些知识可应用于被动处理类似和偏远地区受金属污染的水体。