Suppr超能文献

镍掺杂氧化锌纳米线阵列增强的硫化氢气体传感性能

Enhanced HS Gas-Sensing Performance of Ni-Doped ZnO Nanowire Arrays.

作者信息

Liu Shaoyu, Yang Weiye, Liu Lei, Chen Huohuo, Liu Yingkai

机构信息

Yunnan Key Laboratory of Opto-electronic Information Technology, Yunnan Normal University, Kunming 650500, China.

Institute of Physics and Electronic Information, Yunnan Normal University, Kunming 650500, China.

出版信息

ACS Omega. 2023 Feb 20;8(8):7595-7601. doi: 10.1021/acsomega.2c07092. eCollection 2023 Feb 28.

Abstract

Ni-doped ZnO nanowire arrays (Ni-ZnO NRs) with different Ni concentrations are grown on etched fluorine-doped tin oxide electrodes by the hydrothermal method. The Ni-ZnO NRs with a nickel precursor concentration of 0-12 at. % are adjusted to improve the selectivity and response of the devices. The NRs' morphology and microstructure are investigated by scanning electron microscopy and high-resolution transmission electron microscopy. The sensitive property of the Ni-ZnO NRs is measured. It is found that the Ni-ZnO NRs with an 8 at. % Ni precursor concentration have high selectivity for HS and a large response of 68.9 at 250 °C compared to other gases including ethanol, acetone, toluene, and nitrogen dioxide. Their response/recovery time is 75/54 s. The sensing mechanism is discussed in terms of doping concentration, optimum operating temperature, gas type, and gas concentration. The enhanced performance is related to the regularity degree of the array and the doped Ni and Ni ions, which increases the active sites for oxygen and target gas adsorption on the surface.

摘要

通过水热法在蚀刻的氟掺杂氧化锡电极上生长了具有不同镍浓度的镍掺杂氧化锌纳米线阵列(Ni-ZnO NRs)。调整镍前驱体浓度为0-12原子百分比的Ni-ZnO NRs,以提高器件的选择性和响应性。通过扫描电子显微镜和高分辨率透射电子显微镜研究了NRs的形貌和微观结构。测量了Ni-ZnO NRs的敏感特性。发现镍前驱体浓度为8原子百分比的Ni-ZnO NRs对HS具有高选择性,与包括乙醇、丙酮、甲苯和二氧化氮在内的其他气体相比,在250°C时具有68.9的大响应。它们的响应/恢复时间为75/54秒。从掺杂浓度、最佳工作温度、气体类型和气体浓度方面讨论了传感机制。性能的增强与阵列以及掺杂的Ni和Ni离子的规则度有关,这增加了表面上氧气和目标气体吸附的活性位点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4941/9979365/7c3b981ef368/ao2c07092_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验