Suppr超能文献

高分辨率结构-功能基质触发特征:室性心动过速导管消融的未来路线图。

High-resolution structural-functional substrate-trigger characterization: Future roadmap for catheter ablation of ventricular tachycardia.

作者信息

Stoks Job, Hermans Ben J M, Boukens Bas J D, Holtackers Robert J, Gommers Suzanne, Kaya Yesim S, Vernooy Kevin, Cluitmans Matthijs J M, Volders Paul G A, Ter Bekke Rachel M A

机构信息

Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center+, Maastricht, Netherlands.

Department of Advanced Computing Sciences, Maastricht University, Maastricht, Netherlands.

出版信息

Front Cardiovasc Med. 2023 Feb 16;10:1112980. doi: 10.3389/fcvm.2023.1112980. eCollection 2023.

Abstract

INTRODUCTION

Patients with ventricular tachyarrhythmias (VT) are at high risk of sudden cardiac death. When appropriate, catheter ablation is modestly effective, with relatively high VT recurrence and complication rates. Personalized models that incorporate imaging and computational approaches have advanced VT management. However, 3D patient-specific functional electrical information is typically not considered. We hypothesize that incorporating non-invasive 3D electrical and structural characterization in a patient-specific model improves VT-substrate recognition and ablation targeting.

MATERIALS AND METHODS

In a 53-year-old male with ischemic cardiomyopathy and recurrent monomorphic VT, we built a structural-functional model based on high-resolution 3D late-gadolinium enhancement (LGE) cardiac magnetic resonance imaging (3D-LGE CMR), multi-detector computed tomography (CT), and electrocardiographic imaging (ECGI). Invasive data from high-density contact and pace mapping obtained during endocardial VT-substrate modification were also incorporated. The integrated 3D electro-anatomic model was analyzed off-line.

RESULTS

Merging the invasive voltage maps and 3D-LGE CMR endocardial geometry led to a mean Euclidean node-to-node distance of 5 ± 2 mm. Inferolateral and apical areas of low bipolar voltage (<1.5 mV) were associated with high 3D-LGE CMR signal intensity (>0.4) and with higher transmurality of fibrosis. Areas of functional conduction delay or block (evoked delayed potentials, EDPs) were in close proximity to 3D-LGE CMR-derived heterogeneous tissue corridors. ECGI pinpointed the epicardial VT exit at ∼10 mm from the endocardial site of origin, both juxtaposed to the distal ends of two heterogeneous tissue corridors in the inferobasal left ventricle. Radiofrequency ablation at the entrances of these corridors, eliminating all EDPs, and at the VT site of origin rendered the patient non-inducible and arrhythmia-free until the present day (20 months follow-up). Off-line analysis in our model uncovered dynamic electrical instability of the LV inferolateral heterogeneous scar region which set the stage for an evolving VT circuit.

DISCUSSION AND CONCLUSION

We developed a personalized 3D model that integrates high-resolution structural and electrical information and allows the investigation of their dynamic interaction during arrhythmia formation. This model enhances our mechanistic understanding of scar-related VT and provides an advanced, non-invasive roadmap for catheter ablation.

摘要

引言

室性快速心律失常(VT)患者面临心脏性猝死的高风险。在适当情况下,导管消融有一定效果,但VT复发率和并发症发生率相对较高。结合成像和计算方法的个性化模型推动了VT的治疗。然而,通常未考虑三维患者特异性功能电信息。我们假设在患者特异性模型中纳入非侵入性三维电和结构特征可改善VT基质识别和消融靶点定位。

材料与方法

在一名患有缺血性心肌病和复发性单形性VT的53岁男性患者中,我们基于高分辨率三维延迟钆增强(LGE)心脏磁共振成像(3D-LGE CMR)、多排计算机断层扫描(CT)和心电图成像(ECGI)构建了一个结构功能模型。还纳入了在心内膜VT基质改良期间获得的来自高密度接触和起搏标测的侵入性数据。对整合的三维电解剖模型进行离线分析。

结果

将侵入性电压图与3D-LGE CMR心内膜几何形状合并后,平均欧几里得节点到节点距离为5±2毫米。低双极电压(<1.5 mV)的下外侧和心尖区域与高3D-LGE CMR信号强度(>0.4)以及更高的纤维化透壁性相关。功能性传导延迟或阻滞区域(诱发延迟电位,EDP)紧邻3D-LGE CMR衍生的异质组织通道。ECGI确定心外膜VT出口距离心内膜起源部位约10毫米,两者并列于左心室下基底两个异质组织通道的远端。在这些通道入口处进行射频消融,消除所有EDP,并在VT起源部位进行消融,使患者直至目前(20个月随访)不再能诱发心律失常且无心律失常发作。我们模型的离线分析揭示了左心室下外侧异质瘢痕区域的动态电不稳定,这为不断演变的VT环路奠定了基础。

讨论与结论

我们开发了一个个性化三维模型,该模型整合了高分辨率结构和电信息,并允许研究心律失常形成过程中它们的动态相互作用。该模型增强了我们对瘢痕相关VT的机制理解,并为导管消融提供了一个先进的非侵入性路线图。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e31f/9978225/346ba4d47f9c/fcvm-10-1112980-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验