Suppr超能文献

一种用于预测老年阿尔茨海默病患者入院时住院期间死亡风险的列线图。

A nomogram for predicting risk of death during hospitalization in elderly patients with Alzheimer's disease at the time of admission.

作者信息

Yao Kecheng, Wang Junpeng, Ma Baohua, He Ling, Zhao Tianming, Zou Xiulan, Weng Zean, Yao Rucheng

机构信息

Department of Geriatrics, The People's Hospital of China Three Gorges University, Yichang, Hubei, China.

Department of Medical Record, The People's Hospital of China Three Gorges University, Yichang, Hubei, China.

出版信息

Front Neurol. 2023 Feb 16;14:1093154. doi: 10.3389/fneur.2023.1093154. eCollection 2023.

Abstract

BACKGROUND AND OBJECTIVES

Elderly patients with Alzheimer's disease (AD) often have multiple underlying disorders that lead to frequent hospital admissions and are associated with adverse outcomes such as in-hospital mortality. The aim of our study was to develop a nomogram to be used at hospital admission for predicting the risk of death in patients with AD during hospitalization.

METHODS

We established a prediction model based on a dataset of 328 patients hospitalized with AD -who were admitted and discharged from January 2015 to December 2020. A multivariate logistic regression analysis method combined with a minimum absolute contraction and selection operator regression model was used to establish the prediction model. The identification, calibration, and clinical usefulness of the predictive model were evaluated using the C-index, calibration diagram, and decision curve analysis. Internal validation was evaluated using bootstrapping.

RESULTS

The independent risk factors included in our nomogram were diabetes, coronary heart disease (CHD), heart failure, hypotension, chronic obstructive pulmonary disease (COPD), cerebral infarction, chronic kidney disease (CKD), anemia, activities of daily living (ADL) and systolic blood pressure (SBP). The C-index and AUC of the model were both 0.954 (95% CI: 0.929-0.978), suggesting that the model had accurate discrimination ability and calibration. Internal validation achieved a good C-index of 0.940.

CONCLUSION

The nomogram including the comorbidities (i.e., diabetes, CHD, heart failure, hypotension, COPD, cerebral infarction, anemia and CKD), ADL and SBP can be conveniently used to facilitate individualized identification of risk of death during hospitalization in patients with AD.

摘要

背景与目的

老年阿尔茨海默病(AD)患者常伴有多种基础疾病,导致频繁住院,并与不良结局如住院死亡率相关。我们研究的目的是开发一种入院时使用的列线图,以预测AD患者住院期间的死亡风险。

方法

我们基于2015年1月至2020年12月期间入院并出院的328例AD住院患者的数据集建立了一个预测模型。采用多因素逻辑回归分析方法结合最小绝对收缩和选择算子回归模型建立预测模型。使用C指数、校准图和决策曲线分析评估预测模型的鉴别能力、校准情况和临床实用性。采用自抽样法进行内部验证。

结果

我们列线图纳入的独立危险因素包括糖尿病、冠心病(CHD)、心力衰竭、低血压、慢性阻塞性肺疾病(COPD)、脑梗死、慢性肾脏病(CKD)、贫血、日常生活活动能力(ADL)和收缩压(SBP)。该模型的C指数和AUC均为0.954(95%CI:0.929 - 0.978),表明该模型具有准确的鉴别能力和校准情况。内部验证的C指数为0.940,效果良好。

结论

包含合并症(即糖尿病、CHD、心力衰竭、低血压、COPD、脑梗死、贫血和CKD)、ADL和SBP的列线图可方便地用于促进对AD患者住院期间死亡风险的个体化识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c8e/9978216/e3960fa0dac7/fneur-14-1093154-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验