Suppr超能文献

基于电催化氢气电容化学的pH通用解耦水电解

pH-Universal Decoupled Water Electrolysis Enabled by Electrocatalytic Hydrogen Gas Capacitive Chemistry.

作者信息

Zhu Zhengxin, Jiang Taoli, Sun Jifei, Liu Zaichun, Xie Zehui, Liu Shuang, Meng Yahan, Peng Qia, Wang Weiping, Zhang Kai, Liu Hongxu, Yuan Yuan, Li Ke, Chen Wei

机构信息

Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

JACS Au. 2023 Jan 24;3(2):488-497. doi: 10.1021/jacsau.2c00624. eCollection 2023 Feb 27.

Abstract

In conventional water electrolysis (CWE), the H and O evolution reactions (HER/OER) are tightly coupled, making the generated H and O difficult to separate, thus resulting in complex separation technology and potential safety issues. Previous efforts on the design of decoupled water electrolysis mainly concentrated on multi-electrode or multi-cell configurations; however, these strategies have the limitation of involving complicated operations. Here, we propose and demonstrate a pH-universal, two-electrode capacitive decoupled water electrolyzer (referred to as all-pH-CDWE) in a single-cell configuration by utilizing a low-cost capacitive electrode and a bifunctional HER/OER electrode to separate H and O generation for decoupling water electrolysis. In the all-pH-CDWE, high-purity H and O generation alternately occur at the electrocatalytic gas electrode only by reversing the current polarity. The designed all-pH-CDWE can maintain a continuous round-trip water electrolysis for over 800 consecutive cycles with an electrolyte utilization ratio of nearly 100%. As compared to CWE, the all-pH-CDWE achieves energy efficiencies of 94% in acidic electrolytes and 97% in alkaline electrolytes at a current density of 5 mA cm. Further, the designed all-pH-CDWE can be scaled up to a capacity of 720 C in a high current of 1 A for each cycle with a stable HER average voltage of 0.99 V. This work provides a new strategy toward the mass production of H in a facilely rechargeable process with high efficiency, good robustness, and large-scale applications.

摘要

在传统水电解(CWE)中,析氢反应(HER)和析氧反应(OER)紧密耦合,使得生成的氢气和氧气难以分离,从而导致复杂的分离技术和潜在的安全问题。先前关于解耦水电解设计的努力主要集中在多电极或多电池配置上;然而,这些策略存在操作复杂的局限性。在此,我们提出并展示了一种单电池配置的pH通用型双电极电容解耦水电解槽(称为全pH-CDWE),通过使用低成本的电容电极和双功能HER/OER电极来分离氢气和氧气的生成,以实现水电解的解耦。在全pH-CDWE中,仅通过反转电流极性,高纯度的氢气和氧气就在电催化气体电极上交替生成。所设计的全pH-CDWE可以连续进行超过800个循环的往返水电解,电解液利用率接近100%。与CWE相比,全pH-CDWE在5 mA cm的电流密度下,在酸性电解液中的能量效率达到94%,在碱性电解液中的能量效率达到97%。此外,所设计的全pH-CDWE在1 A的高电流下每个循环的容量可以扩大到720 C,HER平均电压稳定在0.99 V。这项工作为通过高效、稳健且可大规模应用的便捷充电过程大规模生产氢气提供了一种新策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/abed/9975835/ef628c61e522/au2c00624_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验