Nors Jesper, Mattesen Trine Block, Cronin-Fenton Deirdre, Mailhac Aurélie, Bramsen Jesper Bertram, Gotschalck Kåre Andersson, Erichsen Rune, Andersen Claus Lindbjerg
Department of Molecular Medicine, Aarhus University Hospital, Aarhus, Denmark.
Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark.
Clin Epidemiol. 2023 Feb 27;15:241-250. doi: 10.2147/CLEP.S396140. eCollection 2023.
Colorectal cancer (CRC) recurrence is not routinely recorded in Danish health data registries. Here, we aimed to revalidate a registry-based algorithm to identify recurrences in a contemporary cohort and to investigate the accuracy of estimating the time to recurrence (TTR).
We ascertained data on 1129 patients operated for UICC TNM stage I-III CRC during 2012-2017 registered in the CRC biobank at the Department of Molecular Medicine, Aarhus University Hospital, Denmark. Individual-level data were linked with data from the Danish Colorectal Cancer Group database, Danish Cancer Registry, Danish National Registry of Patients, and Danish Pathology Registry. The algorithm identified recurrence based on diagnosis codes of local recurrence or metastases, the receipt of chemotherapy, or a pathological tissue assessment code of recurrence more than 180 days after CRC surgery. A subgroup was selected for validation of the algorithm using medical record reviews as a reference standard.
We found a 3-year cumulative recurrence rate of 20% (95% CI: 17-22%). Manual medical record review identified 80 recurrences in the validation cohort of 522 patients. The algorithm detected recurrence with 94% sensitivity (75/80; 95% CI: 86-98%) and 98% specificity (431/442; 95% CI: 96-99%). The positive and negative predictive values of the algorithm were 87% (95% CI: 78-93%) and 99% (95% CI: 97-100%), respectively. The median difference in TTR (TTR-TTR) was -8 days (IQR: -21 to +3 days). Restricting the algorithm to chemotherapy codes from oncology departments increased the positive predictive value from 87% to 94% without changing the negative predictive value (99%).
The algorithm detected recurrence and TTR with high precision in this contemporary cohort. Restriction to chemotherapy codes from oncology departments using department classifications improves the algorithm. The algorithm is suitable for use in future observational studies.
丹麦健康数据登记处未常规记录结直肠癌(CRC)复发情况。在此,我们旨在重新验证一种基于登记处的算法,以识别当代队列中的复发情况,并研究估计复发时间(TTR)的准确性。
我们确定了2012年至2017年期间在丹麦奥胡斯大学医院分子医学系CRC生物样本库登记的1129例接受UICC TNM I - III期CRC手术患者的数据。个体层面的数据与丹麦结直肠癌组数据库、丹麦癌症登记处、丹麦国家患者登记处和丹麦病理登记处的数据相链接。该算法基于局部复发或转移的诊断代码、化疗的接受情况或CRC手术后180天以上的复发病理组织评估代码来识别复发。选择一个亚组,以病历审查作为参考标准来验证该算法。
我们发现3年累积复发率为20%(95%CI:17 - 22%)。人工病历审查在522例患者的验证队列中识别出80例复发。该算法检测复发的灵敏度为94%(75/80;95%CI:86 - 98%),特异度为98%(431/442;95%CI:96 - 99%)。该算法的阳性预测值和阴性预测值分别为87%(95%CI:78 - 93%)和99%(95%CI:97 - 100%)。TTR(算法得出的TTR - 实际TTR)的中位数差异为 - 8天(IQR: - 21至 + 3天)。将算法限制为肿瘤学部门的化疗代码,可将阳性预测值从87%提高到94%,而不改变阴性预测值(99%)。
在这个当代队列中,该算法高精度地检测出复发和TTR。使用部门分类将算法限制为肿瘤学部门的化疗代码可改进该算法。该算法适用于未来的观察性研究。