Suppr超能文献

对成人听力康复前后收集的生态瞬时评估(EMA)数据进行贝叶斯分析。

Bayesian analysis of Ecological Momentary Assessment (EMA) data collected in adults before and after hearing rehabilitation.

作者信息

Leijon Arne, von Gablenz Petra, Holube Inga, Taghia Jalil, Smeds Karolina

机构信息

KTH - Royal Institute of Technology, Stockholm, Sweden.

Institute of Hearing Technology and Audiology, Jade University of Applied Sciences, Oldenburg, Germany.

出版信息

Front Digit Health. 2023 Feb 17;5:1100705. doi: 10.3389/fdgth.2023.1100705. eCollection 2023.

Abstract

This paper presents a new Bayesian method for analyzing Ecological Momentary Assessment (EMA) data and applies this method in a re-analysis of data from a previous EMA study. The analysis method has been implemented as a freely available Python package , RRID:SCR 022943. The analysis model can use EMA input data including nominal categories in one or more situation dimensions, and ordinal ratings of several perceptual attributes. The analysis uses a variant of ordinal regression to estimate the statistical relation between these variables. The Bayesian method has no requirements related to the number of participants or the number of assessments by each participant. Instead, the method automatically includes measures of the statistical credibility of all analysis results, for the given amount of data. For the previously collected EMA data, the analysis results demonstrate how the new tool can handle heavily skewed, scarce, and clustered data that were collected on ordinal scales, and present results on interval scales. The new method revealed results for the population mean that were similar to those obtained in the previous analysis by an advanced regression model. The Bayesian approach automatically estimated the inter-individual variability in the population, based on the study sample, and could show some statistically credible intervention results also for an unseen random individual in the population. Such results may be interesting, for example, if the EMA methodology is used by a hearing-aid manufacturer in a study to predict the success of a new signal-processing method among future potential customers.

摘要

本文提出了一种用于分析生态瞬时评估(EMA)数据的新贝叶斯方法,并将该方法应用于对先前一项EMA研究数据的重新分析。该分析方法已被实现为一个免费的Python包,RRID:SCR 022943。该分析模型可以使用EMA输入数据,包括一个或多个情境维度中的名义类别以及几个感知属性的有序评分。该分析使用有序回归的一种变体来估计这些变量之间的统计关系。贝叶斯方法对参与者数量或每个参与者的评估数量没有要求。相反,对于给定的数据量,该方法会自动包含所有分析结果的统计可信度度量。对于先前收集的EMA数据,分析结果展示了新工具如何处理在有序尺度上收集的严重偏态、稀缺和聚类的数据,并以区间尺度呈现结果。新方法得出的总体均值结果与先前通过高级回归模型分析得到的结果相似。贝叶斯方法基于研究样本自动估计总体中的个体间变异性,并且对于总体中一个未见过的随机个体也能显示出一些统计上可信的干预结果。例如,如果助听器制造商在一项研究中使用EMA方法来预测新信号处理方法在未来潜在客户中的成功率,这样的结果可能会很有趣。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/965c/9981641/5054300ab378/fdgth-05-1100705-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验