Suppr超能文献

行星种群合成与四类行星系统结构的出现。

Planetary population synthesis and the emergence of four classes of planetary system architectures.

作者信息

Emsenhuber Alexandre, Mordasini Christoph, Burn Remo

机构信息

Universitäts-Sternwarte, Ludwig-Maximilians-Universität München, Scheinerstraße 1, 81679 Munich, Germany.

Space Research and Planetary Sciences, Universität Bern, Gesellschaftsstrasse 6, 3012 Bern, Switzerland.

出版信息

Eur Phys J Plus. 2023;138(2):181. doi: 10.1140/epjp/s13360-023-03784-x. Epub 2023 Feb 27.

Abstract

Planetary population synthesis is a helpful tool to understand the physics of planetary system formation. It builds on a global model, meaning that the model has to include a multitude of physical processes. The outcome can be statistically compared with exoplanet observations. Here, we review the population synthesis method and then use one population computed using the Generation III Bern model to explore how different planetary system architectures emerge and which conditions lead to their formation. The emerging systems can be classified into four main architectures: Class I of near in situ compositionally ordered terrestrial and ice planets, Class II of migrated sub-Neptunes, Class III of mixed low-mass and giant planets, broadly similar to the Solar System, and Class IV of dynamically active giants without inner low-mass planets. These four classes exhibit distinct typical formation pathways and are characterised by certain mass scales. We find that Class I forms from the local accretion of planetesimals followed by a giant impact phase, and the final planet masses correspond to what is expected from such a scenario, the 'Goldreich mass'. Class II, the migrated sub-Neptune systems form when planets reach the 'equality mass' where accretion and migration timescales are comparable before the dispersal of the gas disc, but not large enough to allow for rapid gas accretion. Giant planets form when the 'equality mass' allows for gas accretion to proceed while the planet is migrating, i.e. when the critical core mass is reached. The main discriminant of the four classes is the initial mass of solids in the disc, with contributions from the lifetime and mass of the gas disc. The distinction between mixed Class III systems and Class IV dynamically active giants is in part due to the stochastic nature of dynamical interactions, such as scatterings between giant planets, rather than the initial conditions only. The breakdown of system into classes allows to better interpret the outcome of a complex model and understand which physical processes are dominant. Comparison with observations reveals differences to the actual population, pointing at limitation of theoretical understanding. For example, the overrepresentation of synthetic super-Earths and sub-Neptunes in Class I systems causes these planets to be found at lower metallicities than in observations.

摘要

行星群体合成是理解行星系统形成物理过程的一个有用工具。它基于一个全局模型,这意味着该模型必须包含众多物理过程。其结果可以与系外行星观测数据进行统计比较。在这里,我们回顾群体合成方法,然后使用利用第三代伯恩模型计算出的一个群体来探究不同的行星系统结构是如何出现的,以及哪些条件导致了它们的形成。出现的系统可以分为四种主要结构:I类为近原位成分有序的类地行星和冰行星;II类为迁移的次海王星;III类为低质量行星和巨行星混合的,大致类似于太阳系;IV类为没有内部低质量行星的动态活跃巨行星。这四类呈现出不同的典型形成路径,并具有特定的质量尺度特征。我们发现I类由小行星体的局部吸积形成,随后经历一个巨型撞击阶段,最终行星质量与这种情况下预期的“戈德赖希质量”相符。II类,即迁移的次海王星系统,当行星达到“相等质量”时形成,此时在气体盘消散之前吸积和迁移时间尺度相当,但又不足以允许快速气体吸积。当“相等质量”允许行星在迁移时进行气体吸积,即当达到临界核心质量时,巨行星形成。这四类的主要判别因素是盘中固体的初始质量,以及气体盘的寿命和质量的贡献。III类混合系统和IV类动态活跃巨行星之间的区别部分是由于动态相互作用的随机性,比如巨行星之间的散射,而不仅仅是初始条件。将系统细分为不同类别有助于更好地解释复杂模型的结果,并理解哪些物理过程起主导作用。与观测结果的比较揭示了与实际群体的差异,指出了理论理解的局限性。例如,I类系统中合成超级地球和次海王星的过度代表导致这些行星在观测中比实际发现的金属丰度更低。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/45fd/9971156/55d6f733e20c/13360_2023_3784_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验