Suppr超能文献

建立并验证基于 AJCC 第 8 版 TNM 分期系统的 SEER 数据库预测甲状腺髓样癌远处转移的列线图模型。

Establishment and validation of a nomogram model for predicting distant metastasis in medullary thyroid carcinoma: An analysis of the SEER database based on the AJCC 8th TNM staging system.

机构信息

Shengli Clinical Medical College, Fujian Medical University, Fuzhou, China.

Department of Internal Medicine, Fujian Provincial Hospital South Branch, Fuzhou, China.

出版信息

Front Endocrinol (Lausanne). 2023 Feb 15;14:1119656. doi: 10.3389/fendo.2023.1119656. eCollection 2023.

Abstract

OBJECTIVE

Medullary thyroid carcinoma (MTC) patients with distant metastases frequently present a relatively poor survival prognosis. Our main purpose was developing a nomogram model to predict distant metastases in MTC patients.

METHODS

This was a retrospective study based on the Surveillance, Epidemiology, and End Results (SEER) database. Data of 807 MTC patients diagnosed from 2004 to 2015 who undergone total thyroidectomy and neck lymph nodes dissection was included in our study. Independent risk factors were screened by univariate and multivariate logistic regression analysis successively, which were used to develop a nomogram model predicting for distant metastasis risk. Further, the log-rank test was used to compare the differences of Kaplan-Meier curves of cancer-specific survival (CSS) in different M stage and each independent risk factor groups.

RESULTS

Four clinical parameters including age > 55 years, higher T stage (T3/T4), higher N stage (N1b) and lymph node ratio (LNR) > 0.4 were significant for distant metastases at the time of diagnosis in MTC patients, and were selected to develop a nomogram model. This model had satisfied discrimination with the AUC and C-index of 0.894, and C-index was confirmed to be 0.878 through bootstrapping validation. A decision curve analysis (DCA) was subsequently made to evaluate the feasibility of this nomogram for predicting distant metastasis. In addition, CSS differed by different M stage, T stage, N stage, age and LNR groups.

CONCLUSIONS

Age, T stage, N stage and LNR were extracted to develop a nomogram model for predicting the risk of distant metastases in MTC patients. The model is of great significance for clinicians to timely identify patients with high risk of distant metastases and make further clinical decisions.

摘要

目的

患有远处转移的甲状腺髓样癌(MTC)患者的生存预后通常较差。我们的主要目的是开发一种列线图模型来预测 MTC 患者的远处转移。

方法

这是一项基于监测、流行病学和最终结果(SEER)数据库的回顾性研究。本研究纳入了 2004 年至 2015 年间接受甲状腺全切除术和颈部淋巴结清扫术的 807 例 MTC 患者的数据。通过单因素和多因素逻辑回归分析筛选独立危险因素,用于建立预测远处转移风险的列线图模型。进一步使用对数秩检验比较不同 M 分期和每个独立危险因素组之间癌症特异性生存(CSS)的 Kaplan-Meier 曲线差异。

结果

年龄>55 岁、较高的 T 分期(T3/T4)、较高的 N 分期(N1b)和淋巴结比值(LNR)>0.4 是 MTC 患者在诊断时发生远处转移的四个临床参数,这些参数被选入用于开发列线图模型。该模型具有令人满意的区分度,AUC 和 C 指数分别为 0.894 和 0.878,通过自举验证得到确认。随后进行决策曲线分析(DCA)以评估该列线图预测远处转移的可行性。此外,CSS 因不同的 M 分期、T 分期、N 分期、年龄和 LNR 组而异。

结论

年龄、T 分期、N 分期和 LNR 被提取出来用于开发预测 MTC 患者远处转移风险的列线图模型。该模型对于临床医生及时识别远处转移风险较高的患者并做出进一步的临床决策具有重要意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e24/9975719/0f7ff484f9a3/fendo-14-1119656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验