Huang Mengtian, Wang Ting, Wu Zhen, Shang Yihao, Zhao Yu, Li Benxia
Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China.
College of Material, Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
J Colloid Interface Sci. 2022 Dec 15;628(Pt B):129-140. doi: 10.1016/j.jcis.2022.08.059. Epub 2022 Aug 13.
Artificial photosynthesis has become one of the most attractive strategies for lowering atmospheric carbon dioxide (CO) level and achieving the carbon balance; whereas, the fast electron-hole recombination and sluggish charge transfer in photocatalysts are themain stumbling blocks to the applications. Constructing semiconductor nano-heterostructures provides a promising strategy to accelerate the separation and transfer of photoinduced charge carriers for promoting the multielectron CO reduction reaction. Herein, a CdS/g-CN/α-FeO three-component photocatalyst consisting of type II and Z-scheme tandem heterojunctions is skillfully fabricated via the solvothermal synthesis followed with photoinduced deposition. The CdS/g-CN/α-FeO tandem-heterojunction photocatalyst exhibits superior performance toward the conversion of CO to fuels (CO and CH), compared with the single- and binary-component systems, owing to the favorable energy-level alignment, accelerated charge separation, facilitated water dissociation and sufficient reactive-hydrogen provision. The total consumed electron number of CdS/g-CN/α-FeO catalyst for CO reduction is about 10.5 times that of pure g-CN. The photocatalytic mechanism is elucidated according to detailed characterizations and in-situ spectroscopy analyses. This work sheds light on the rational construction of heterojunction photocatalysts to promote the conversion of CO to solar fuels, without using any sacrifice reagent or noble-metal cocatalysts.
人工光合作用已成为降低大气中二氧化碳(CO)水平并实现碳平衡最具吸引力的策略之一;然而,光催化剂中快速的电子 - 空穴复合和缓慢的电荷转移是其应用的主要绊脚石。构建半导体纳米异质结构为加速光生电荷载流子的分离和转移以促进多电子CO还原反应提供了一种有前景的策略。在此,通过溶剂热合成随后光诱导沉积巧妙地制备了一种由II型和Z型串联异质结组成的CdS/g-CN/α-FeO三组分光催化剂。与单组分和双组分体系相比,CdS/g-CN/α-FeO串联异质结光催化剂在将CO转化为燃料(CO和CH)方面表现出优异的性能,这归因于有利的能级排列、加速的电荷分离、促进的水分解和充足的活性氢供应。CdS/g-CN/α-FeO催化剂用于CO还原的总消耗电子数约为纯g-CN的10.5倍。根据详细的表征和原位光谱分析阐明了光催化机理。这项工作为合理构建异质结光催化剂以促进CO转化为太阳能燃料提供了思路,且无需使用任何牺牲试剂或贵金属助催化剂。