Engineering Research Center for Nanophotonics and Advanced Instrument, Ministry of Education, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, China.
Collage of Marine Science and Technology, Zhejiang Ocean University, Zhoushan, 316022, China.
Nanoscale. 2023 Mar 23;15(12):5909-5918. doi: 10.1039/d2nr04952j.
Non-thermal plasma (NTP) degradation of volatile organic compounds (VOCs) into CO and HO is a promising strategy for addressing ever-growing environment pollution. However, its practical implementation is hindered by low conversion efficiency and emissions of noxious by-products. Herein, an advanced low-oxygen-pressure calcination process is developed to fine-tune the oxygen vacancy concentration of MOF-derived TiO nanocrystals. Vo-poor and Vo-rich TiO catalysts were placed in the back of an NTP reactor to convert harmful ozone molecules into ROS that decompose VOCs heterogeneous catalytic ozonation processes. The results indicate that Vo-TiO-5/NTP with the highest Vo concentration exhibited superior catalytic activity in the degradation of toluene compared to NTP-only and TiO/NTP, achieving a maximum 96% elimination efficiency and 76% CO selectivity at an SIE of 540 J L. Mechanistic analysis reveals that the O, ˙O and ˙OH species derived from the activation of O molecules on Vo sites contribute to the decomposition of toluene over the Vo-rich TiO surface. With the aid of advanced characterization and density functional theory calculations, the roles of oxygen vacancies in manipulating the synergistic capability of post-NTP systems were explored, and were attributed to increased O adsorption ability and enhanced charge transfer dynamics. This work presents novel insights into the design of high-efficiency NTP catalysts structured with active Vo sites.
非热等离子体(NTP)将挥发性有机化合物(VOCs)降解为 CO 和 HO 是解决日益严重的环境污染的一种很有前途的策略。然而,其实际应用受到低转化率和有害副产物排放的限制。在此,开发了一种先进的低氧压煅烧工艺来精细调整 MOF 衍生的 TiO 纳米晶体中的氧空位浓度。贫氧空位和富氧空位的 TiO 催化剂分别置于 NTP 反应器的后部,将有害的臭氧分子转化为 ROS,从而分解 VOCs 的非均相催化臭氧化过程。结果表明,具有最高氧空位浓度的 Vo-TiO-5/NTP 在甲苯的降解中表现出比 NTP 单独使用和 TiO/NTP 更高的催化活性,在 SIE 为 540 J L 时,最大消除效率达到 96%,CO 选择性达到 76%。机理分析表明,O、˙O 和 ˙OH 物质是由 Vo 位上 O 分子的活化产生的,有助于在富氧空位的 TiO 表面上分解甲苯。借助先进的表征和密度泛函理论计算,探讨了氧空位在调控 NTP 后体系协同能力方面的作用,这归因于增加了 O 吸附能力和增强了电荷转移动力学。这项工作为设计具有活性 Vo 位的高效 NTP 催化剂提供了新的思路。