Suppr超能文献

比较人类腹侧视觉通路和卷积神经网络中颜色和形状信息的优势。

Comparing the Dominance of Color and Form Information across the Human Ventral Visual Pathway and Convolutional Neural Networks.

机构信息

Columbia University, New York, NY.

Yale University, New Haven, CT.

出版信息

J Cogn Neurosci. 2023 May 1;35(5):816-840. doi: 10.1162/jocn_a_01979.

Abstract

Color and form information can be decoded in every region of the human ventral visual hierarchy, and at every layer of many convolutional neural networks (CNNs) trained to recognize objects, but how does the coding strength of these features vary over processing? Here, we characterize for these features both their absolute coding strength-how strongly each feature is represented independent of the other feature-and their relative coding strength-how strongly each feature is encoded relative to the other, which could constrain how well a feature can be read out by downstream regions across variation in the other feature. To quantify relative coding strength, we define a measure called the form dominance index that compares the relative influence of color and form on the representational geometry at each processing stage. We analyze brain and CNN responses to stimuli varying based on color and either a simple form feature, orientation, or a more complex form feature, curvature. We find that while the brain and CNNs largely differ in how the absolute coding strength of color and form vary over processing, comparing them in terms of their relative emphasis of these features reveals a striking similarity: For both the brain and for CNNs trained for object recognition (but not for untrained CNNs), orientation information is increasingly de-emphasized, and curvature information is increasingly emphasized, relative to color information over processing, with corresponding processing stages showing largely similar values of the form dominance index.

摘要

颜色和形状信息可以在人类腹侧视觉层次结构的每个区域以及许多经过训练以识别物体的卷积神经网络 (CNN) 的每一层进行解码,但这些特征的编码强度如何随处理而变化?在这里,我们对这些特征进行了描述,包括它们的绝对编码强度——每个特征独立于其他特征的表示强度——以及它们的相对编码强度——每个特征相对于另一个特征的编码强度,这可能会限制特征在另一个特征的变化下通过下游区域进行读取的效果。为了量化相对编码强度,我们定义了一个称为形式主导指数的度量标准,该标准比较了颜色和形状在每个处理阶段的表示几何形状上的相对影响。我们分析了大脑和 CNN 对基于颜色和简单形式特征(方向)或更复杂形式特征(曲率)的刺激的反应。我们发现,尽管大脑和 CNN 在颜色和形状的绝对编码强度如何随处理而变化方面存在很大差异,但从它们对这些特征的相对强调方面进行比较揭示了惊人的相似性:对于大脑和为物体识别而训练的 CNN(但不是为未训练的 CNN),相对于颜色信息,方向信息的重要性逐渐降低,曲率信息的重要性逐渐增加,相应的处理阶段的形式主导指数值大致相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/decd/11283826/0b8f730bfe3b/nihms-2002030-f0001.jpg

相似文献

引用本文的文献

1
Combining contour and region for closed boundary extraction of a shape.结合轮廓和区域进行形状的封闭边界提取。
Front Psychol. 2023 Nov 15;14:1198691. doi: 10.3389/fpsyg.2023.1198691. eCollection 2023.

本文引用的文献

8
Individual differences among deep neural network models.深度神经网络模型的个体差异。
Nat Commun. 2020 Nov 12;11(1):5725. doi: 10.1038/s41467-020-19632-w.
9
A map of object space in primate inferotemporal cortex.灵长类动物下颞叶皮层的客体空间图谱。
Nature. 2020 Jul;583(7814):103-108. doi: 10.1038/s41586-020-2350-5. Epub 2020 Jun 3.
10
Deep Learning: The Good, the Bad, and the Ugly.深度学习:好的、坏的和丑的。
Annu Rev Vis Sci. 2019 Sep 15;5:399-426. doi: 10.1146/annurev-vision-091718-014951. Epub 2019 Aug 8.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验