Suppr超能文献

用于多元函数数据和时间扭曲可分离性的潜在变形模型。

Latent deformation models for multivariate functional data and time-warping separability.

机构信息

Department of Mathematics and Statistics, University of San Francisco, San Francisco, California, USA.

Department of Statistics, University of California, Davis, California, USA.

出版信息

Biometrics. 2023 Dec;79(4):3345-3358. doi: 10.1111/biom.13851. Epub 2023 Apr 11.

Abstract

Multivariate functional data present theoretical and practical complications that are not found in univariate functional data. One of these is a situation where the component functions of multivariate functional data are positive and are subject to mutual time warping. That is, the component processes exhibit a common shape but are subject to systematic phase variation across their domains in addition to subject-specific time warping, where each subject has its own internal clock. This motivates a novel model for multivariate functional data that connect such mutual time warping to a latent-deformation-based framework by exploiting a novel time-warping separability assumption. This separability assumption allows for meaningful interpretation and dimension reduction. The resulting latent deformation model is shown to be well suited to represent commonly encountered functional vector data. The proposed approach combines a random amplitude factor for each component with population-based registration across the components of a multivariate functional data vector and includes a latent population function, which corresponds to a common underlying trajectory. We propose estimators for all components of the model, enabling implementation of the proposed data-based representation for multivariate functional data and downstream analyses such as Fréchet regression. Rates of convergence are established when curves are fully observed or observed with measurement error. The usefulness of the model, interpretations, and practical aspects are illustrated in simulations and with application to multivariate human growth curves and multivariate environmental pollution data.

摘要

多元函数数据呈现出理论和实践上的复杂性,这些复杂性在单变量函数数据中是不存在的。其中之一是多元函数数据的分量函数为正,并且受到相互时间扭曲的情况。也就是说,分量过程表现出共同的形状,但除了个体特定的时间扭曲外,它们在各自的域中还受到系统的相位变化的影响,每个个体都有自己的内部时钟。这就促使我们提出了一种新的多元函数数据模型,通过利用一种新的时间扭曲可分离性假设,将这种相互时间扭曲与基于潜在变形的框架联系起来。这种可分离性假设允许进行有意义的解释和降维。结果表明,所提出的潜在变形模型非常适合表示常见的功能向量数据。该方法将每个分量的随机幅度因子与多元函数数据向量分量之间的基于人群的配准相结合,并包含一个潜在的人群函数,该函数对应于一个共同的潜在轨迹。我们为模型的所有分量提出了估计器,这使得能够为多元函数数据实施基于数据的表示,并进行下游分析,如 Fréchet 回归。在曲线完全观测或存在测量误差观测的情况下,建立了曲线的收敛速度。该模型、解释和实际方面的有用性在模拟和多元人类生长曲线以及多元环境污染数据的应用中得到了说明。

相似文献

3
Model-based joint curve registration and classification.基于模型的联合曲线配准与分类
J Appl Stat. 2022 Jan 14;50(5):1178-1198. doi: 10.1080/02664763.2021.2023118. eCollection 2023.
4
Principal component analysis of hybrid functional and vector data.混合功能和向量数据的主成分分析。
Stat Med. 2021 Oct 30;40(24):5152-5173. doi: 10.1002/sim.9117. Epub 2021 Jun 23.
5
Clustering multivariate functional data with phase variation.具有相位变化的多元函数数据聚类
Biometrics. 2017 Mar;73(1):324-333. doi: 10.1111/biom.12546. Epub 2016 May 24.
6
Robust depth-based estimation in the time warping model.基于时间 warp 模型的稳健深度估计。
Biostatistics. 2012 Jul;13(3):398-414. doi: 10.1093/biostatistics/kxr037. Epub 2011 Nov 3.
7
Warped functional analysis of variance.扭曲的方差函数分析
Biometrics. 2014 Sep;70(3):526-35. doi: 10.1111/biom.12171. Epub 2014 Apr 29.
10
Registration for exponential family functional data.指数族函数型数据的注册
Biometrics. 2019 Mar;75(1):48-57. doi: 10.1111/biom.12963. Epub 2018 Sep 19.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验