Suppr超能文献

混合功能和向量数据的主成分分析。

Principal component analysis of hybrid functional and vector data.

机构信息

Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.

出版信息

Stat Med. 2021 Oct 30;40(24):5152-5173. doi: 10.1002/sim.9117. Epub 2021 Jun 23.

Abstract

We propose a practical principal component analysis (PCA) framework that provides a nonparametric means of simultaneously reducing the dimensions of and modeling functional and vector (multivariate) data. We first introduce a Hilbert space that combines functional and vector objects as a single hybrid object. The framework, termed a PCA of hybrid functional and vector data (HFV-PCA), is then based on the eigen-decomposition of a covariance operator that captures simultaneous variations of functional and vector data in the new space. This approach leads to interpretable principal components that have the same structure as each observation and a single set of scores that serves well as a low-dimensional proxy for hybrid functional and vector data. To support practical application of HFV-PCA, the explicit relationship between the hybrid PC decomposition and the functional and vector PC decompositions is established, leading to a simple and robust estimation scheme where components of HFV-PCA are calculated using the components estimated from the existing functional and classical PCA methods. This estimation strategy allows flexible incorporation of sparse and irregular functional data as well as multivariate functional data. We derive the consistency results and asymptotic convergence rates for the proposed estimators. We demonstrate the efficacy of the method through simulations and analysis of renal imaging data.

摘要

我们提出了一个实用的主成分分析(PCA)框架,该框架提供了一种非参数方法,可以同时降低功能和向量(多元)数据的维度并对其进行建模。我们首先引入了一个 Hilbert 空间,将功能和向量对象组合成单个混合对象。该框架称为混合功能和向量数据的 PCA(HFV-PCA),它基于协方差算子的特征分解,该算子捕获了新空间中功能和向量数据的同时变化。这种方法导致可解释的主成分,其结构与每个观测值相同,并且具有一组得分,可以很好地作为混合功能和向量数据的低维代理。为了支持 HFV-PCA 的实际应用,建立了混合 PC 分解与功能和向量 PC 分解之间的显式关系,从而得到了一种简单而稳健的估计方案,其中 HFV-PCA 的分量是使用从现有功能和经典 PCA 方法估计的分量计算的。这种估计策略允许灵活地合并稀疏和不规则的功能数据以及多元功能数据。我们推导了所提出的估计量的一致性结果和渐近收敛速度。我们通过模拟和肾脏成像数据分析来证明该方法的有效性。

相似文献

1
Principal component analysis of hybrid functional and vector data.
Stat Med. 2021 Oct 30;40(24):5152-5173. doi: 10.1002/sim.9117. Epub 2021 Jun 23.
2
Hybrid principal components analysis for region-referenced longitudinal functional EEG data.
Biostatistics. 2020 Jan 1;21(1):139-157. doi: 10.1093/biostatistics/kxy034.
3
Incorporating biological information in sparse principal component analysis with application to genomic data.
BMC Bioinformatics. 2017 Jul 11;18(1):332. doi: 10.1186/s12859-017-1740-7.
4
Applying stability selection to consistently estimate sparse principal components in high-dimensional molecular data.
Bioinformatics. 2015 Aug 15;31(16):2683-90. doi: 10.1093/bioinformatics/btv197. Epub 2015 Apr 10.
6
Kernel component analysis using an epsilon-insensitive robust loss function.
IEEE Trans Neural Netw. 2008 Sep;19(9):1583-98. doi: 10.1109/TNN.2008.2000443.
8
Stochastic convex sparse principal component analysis.
EURASIP J Bioinform Syst Biol. 2016 Sep 9;2016(1):15. doi: 10.1186/s13637-016-0045-x. eCollection 2016 Dec.
9
Robust functional principal component analysis via a functional pairwise spatial sign operator.
Biometrics. 2023 Jun;79(2):1239-1253. doi: 10.1111/biom.13695. Epub 2022 Jun 7.
10
Multiple-trait genome-wide association study based on principal component analysis for residual covariance matrix.
Heredity (Edinb). 2014 Dec;113(6):526-32. doi: 10.1038/hdy.2014.57. Epub 2014 Jul 2.

引用本文的文献

2
Immune infiltration and drug treatment response of angiogenesis-related LncRNA in lung adenocarcinoma.
Medicine (Baltimore). 2025 Jul 4;104(27):e42958. doi: 10.1097/MD.0000000000042958.
4
Prognostic value of disulfidptosis-associated genes in gastric cancer: a comprehensive analysis.
Front Oncol. 2025 Mar 4;15:1512394. doi: 10.3389/fonc.2025.1512394. eCollection 2025.
6
NRGCNMDA: Microbe-Drug Association Prediction Based on Residual Graph Convolutional Networks and Conditional Random Fields.
Interdiscip Sci. 2025 Jun;17(2):344-358. doi: 10.1007/s12539-024-00678-z. Epub 2025 Jan 7.
9
Survival Dynamics in Advanced Ovarian Cancer: R2 Resection Versus No-Surgery Paths Explored.
Cancer Control. 2024 Jan-Dec;31:10732748241285480. doi: 10.1177/10732748241285480.

本文引用的文献

2
Functional principal component model for high-dimensional brain imaging.
Neuroimage. 2011 Oct 1;58(3):772-84. doi: 10.1016/j.neuroimage.2011.05.085. Epub 2011 Jun 21.
4
Longitudinal functional principal component analysis.
Electron J Stat. 2010;4:1022-1054. doi: 10.1214/10-EJS575.
5
Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data.
J Am Stat Assoc. 2010 Mar 1;105(489):390-400. doi: 10.1198/jasa.2010.tm08737.
6
MULTILEVEL FUNCTIONAL PRINCIPAL COMPONENT ANALYSIS.
Ann Appl Stat. 2009 Mar 1;3(1):458-488. doi: 10.1214/08-AOAS206SUPP.
7
Fast methods for spatially correlated multilevel functional data.
Biostatistics. 2010 Apr;11(2):177-94. doi: 10.1093/biostatistics/kxp058. Epub 2010 Jan 19.
8
Joint modelling of paired sparse functional data using principal components.
Biometrika. 2008;95(3):601-619. doi: 10.1093/biomet/asn035.
9
Decision support systems in diuresis renography.
Semin Nucl Med. 2008 Jan;38(1):67-81. doi: 10.1053/j.semnuclmed.2007.09.006.
10
Nonparametric mixed effects models for unequally sampled noisy curves.
Biometrics. 2001 Mar;57(1):253-9. doi: 10.1111/j.0006-341x.2001.00253.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验