Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, Indiana, USA.
Stat Med. 2021 Oct 30;40(24):5152-5173. doi: 10.1002/sim.9117. Epub 2021 Jun 23.
We propose a practical principal component analysis (PCA) framework that provides a nonparametric means of simultaneously reducing the dimensions of and modeling functional and vector (multivariate) data. We first introduce a Hilbert space that combines functional and vector objects as a single hybrid object. The framework, termed a PCA of hybrid functional and vector data (HFV-PCA), is then based on the eigen-decomposition of a covariance operator that captures simultaneous variations of functional and vector data in the new space. This approach leads to interpretable principal components that have the same structure as each observation and a single set of scores that serves well as a low-dimensional proxy for hybrid functional and vector data. To support practical application of HFV-PCA, the explicit relationship between the hybrid PC decomposition and the functional and vector PC decompositions is established, leading to a simple and robust estimation scheme where components of HFV-PCA are calculated using the components estimated from the existing functional and classical PCA methods. This estimation strategy allows flexible incorporation of sparse and irregular functional data as well as multivariate functional data. We derive the consistency results and asymptotic convergence rates for the proposed estimators. We demonstrate the efficacy of the method through simulations and analysis of renal imaging data.
我们提出了一个实用的主成分分析(PCA)框架,该框架提供了一种非参数方法,可以同时降低功能和向量(多元)数据的维度并对其进行建模。我们首先引入了一个 Hilbert 空间,将功能和向量对象组合成单个混合对象。该框架称为混合功能和向量数据的 PCA(HFV-PCA),它基于协方差算子的特征分解,该算子捕获了新空间中功能和向量数据的同时变化。这种方法导致可解释的主成分,其结构与每个观测值相同,并且具有一组得分,可以很好地作为混合功能和向量数据的低维代理。为了支持 HFV-PCA 的实际应用,建立了混合 PC 分解与功能和向量 PC 分解之间的显式关系,从而得到了一种简单而稳健的估计方案,其中 HFV-PCA 的分量是使用从现有功能和经典 PCA 方法估计的分量计算的。这种估计策略允许灵活地合并稀疏和不规则的功能数据以及多元功能数据。我们推导了所提出的估计量的一致性结果和渐近收敛速度。我们通过模拟和肾脏成像数据分析来证明该方法的有效性。