Cavdar Onur, Baluk Mateusz, Malankowska Anna, Żak Andrzej, Lisowski Wojciech, Klimczuk Tomasz, Zaleska-Medynska Adriana
Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
Department of Environmental Technology, Faculty of Chemistry, University of Gdansk, Gdansk, Poland.
J Colloid Interface Sci. 2023 Jun 15;640:578-587. doi: 10.1016/j.jcis.2023.02.129. Epub 2023 Mar 2.
ZnInS (ZIS) is one of the widely studied photocatalyst for photocatalytic hydrogen evolution applications due to its prominent visible light response and strong reduction ability. However, its photocatalytic glycerol reforming performance for hydrogen evolution has never been reported. Herein, the visible light driven BiOCl@ZnInS (BiOCl@ZIS) composite was synthesized by growth of ZIS nanosheets on a template-like hydrothermally pre-prepared wide-band-gap BiOCl microplates using simple oil-bath method to be used for the first time for photocatalytic glycerol reforming for photocatalytic hydrogen evolution (PHE) under visible light irradiation (λ > 420 nm). The optimum amount of BiOCl microplates in the composite was found 4 wt% (4% BiOCl@ZIS) in the presence of in-situ 1 wt% Pt deposition. Then, the in-situ Pt photodeposition optimization studies over 4% BiOCl@ZIS composite showed the highest PHE rate of 674 μmol gh with the ultra-low platinum amount (0.0625 wt%). The possible mechanisms behind this improvement can be ascribed to the formation of BiS low-band-gap semiconductor during BiOCl@ZIS composite synthesis resulting in Z-scheme charge transfer mechanism between ZIS and BiS upon visible light irradiation. This work expresses not only the photocatalytic glycerol reforming over ZIS photocatalyst but also a solid proof of the contribution of wide-band-gap BiOCl photocatalysts to enhancement of ZIS PHE performance under visible light.
硫化锌铟(ZIS)因其突出的可见光响应和较强的还原能力,是光催化析氢应用中广泛研究的光催化剂之一。然而,其光催化甘油重整析氢性能尚未见报道。在此,通过简单的油浴法,在水热预制备的宽带隙BiOCl微板模板上生长ZIS纳米片,首次合成了可见光驱动的BiOCl@ZnInS(BiOCl@ZIS)复合材料,用于在可见光照射(λ>420nm)下光催化甘油重整以实现光催化析氢(PHE)。发现在原位沉积1wt%Pt的情况下,复合材料中BiOCl微板的最佳含量为4wt%(4%BiOCl@ZIS)。然后,对4%BiOCl@ZIS复合材料进行的原位Pt光沉积优化研究表明,在超低铂含量(0.0625wt%)下,PHE速率最高可达674μmol g⁻¹ h⁻¹。这种改进背后的可能机制可归因于在BiOCl@ZIS复合材料合成过程中形成了BiS低带隙半导体,导致在可见光照射下ZIS和BiS之间形成Z型电荷转移机制。这项工作不仅展示了ZIS光催化剂上的光催化甘油重整,也有力证明了宽带隙BiOCl光催化剂对提高ZIS在可见光下的PHE性能的贡献。