Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA. Electronic address: https://twitter.com/tgeiller.
Department of Neuroscience, Columbia University, New York, NY, 10027, USA; Mortimer B Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA; Center for Theoretical Neuroscience, Columbia University, New York, NY, 10027, USA. Electronic address: https://twitter.com/jamespriestley4.
Curr Opin Neurobiol. 2023 Apr;79:102701. doi: 10.1016/j.conb.2023.102701. Epub 2023 Mar 4.
The hippocampus is a multi-stage neural circuit that is critical for memory formation. Its distinct anatomy has long inspired theories that rely on local interactions between neurons within each subregion in order to perform serial operations important for memory encoding and storage. These local computations have received less attention in CA1 area, the primary output node of the hippocampus, where excitatory neurons are thought to be only very sparsely interconnected. However, recent findings have demonstrated the power of local circuitry in CA1, with evidence for strong functional interactions among excitatory neurons, regulation by diverse inhibitory microcircuits, and novel plasticity rules that can profoundly reshape the hippocampal ensemble code. Here we review how these properties expand the dynamical repertoire of CA1 beyond the confines of feedforward processing, and what implications they have for hippocampo-cortical functions in memory formation.
海马体是一个多阶段的神经网络,对记忆形成至关重要。其独特的解剖结构长期以来激发了这样的理论:依赖于每个亚区内部神经元之间的局部相互作用,以执行记忆编码和存储的重要串行操作。这些局部计算在海马体的主要输出节点 CA1 区域中受到的关注较少,人们认为那里的兴奋性神经元之间的连接非常稀疏。然而,最近的发现证明了 CA1 中局部回路的强大功能,有证据表明兴奋性神经元之间存在强大的功能相互作用,受多种抑制性微回路的调节,以及新的可塑性规则,可以深刻重塑海马体整体编码。在这里,我们回顾了这些特性如何将 CA1 的动力学范围扩展到前馈处理的范围之外,以及它们对海马体在记忆形成中的皮质功能有什么影响。