Camargo Anderson, Dalmagro Ana P, Altê Glorister A, Zeni Ana Lúcia B, Tasca Carla I, Rodrigues Ana Lúcia S
Department of Biochemistry, Center of Biological Sciences, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, Santa Catarina, Brazil.
Department of Natural Sciences, Center of Natural and Exact Sciences, Universidade Regional de Blumenau, Blumenau CEP, 89030-903, Santa Catarina, Brazil.
Chem Biol Interact. 2023 Apr 25;375:110440. doi: 10.1016/j.cbi.2023.110440. Epub 2023 Mar 4.
Guanosine has been reported to elicit antidepressant-like responses in rodents, but if these actions are associated with its ability to afford neuroprotection against glutamate-induced toxicity still needs to be fully understood. Therefore, this study investigated the antidepressant-like and neuroprotective effects elicited by guanosine in mice and evaluated the possible involvement of NMDA receptors, glutamine synthetase, and GLT-1 in these responses. We found that guanosine (0.05 mg/kg, but not 0.01 mg/kg, p. o.) was effective in producing an antidepressant-like effect and protecting hippocampal and prefrontocortical slices against glutamate-induced damage. Our results also unveiled that ketamine (1 mg/kg, but not 0.1 mg/kg, i. p, an NMDA receptor antagonist) effectively elicited antidepressant-like actions and protected hippocampal and prefrontocortical slices against glutamatergic toxicity. Furthermore, the combined administration of sub-effective doses of guanosine (0.01 mg/kg, p. o.) with ketamine (0.1 mg/kg, i. p.) promoted an antidepressant-like effect and augmented glutamine synthetase activity and GLT-1 immunocontent in the hippocampus, but not in the prefrontal cortex. Our results also showed that the combination of sub-effective doses of ketamine and guanosine, at the same protocol schedule that exhibited an antidepressant-like effect, effectively abolished glutamate-induced damage in hippocampal and prefrontocortical slices. Our in vitro results reinforce that guanosine, ketamine, or sub-effective concentrations of guanosine plus ketamine protect against glutamate exposure by modulating glutamine synthetase activity and GLT-1 levels. Finally, molecular docking analysis suggests that guanosine might interact with NMDA receptors at the ketamine or glycine/d-serine co-agonist binding sites. These findings provide support for the premise that guanosine has antidepressant-like effects and should be further investigated for depression management.
据报道,鸟苷可在啮齿动物中引发类抗抑郁反应,但这些作用是否与其对谷氨酸诱导的毒性提供神经保护的能力相关,仍有待充分了解。因此,本研究调查了鸟苷在小鼠中引发的类抗抑郁和神经保护作用,并评估了NMDA受体、谷氨酰胺合成酶和GLT-1在这些反应中可能的参与情况。我们发现,鸟苷(0.05mg/kg,口服,但不是0.01mg/kg)能有效产生类抗抑郁作用,并保护海马体和前额叶皮层切片免受谷氨酸诱导的损伤。我们的结果还表明,氯胺酮(1mg/kg,腹腔注射,但不是0.1mg/kg,一种NMDA受体拮抗剂)能有效引发类抗抑郁作用,并保护海马体和前额叶皮层切片免受谷氨酸能毒性。此外,将次有效剂量的鸟苷(0.01mg/kg,口服)与氯胺酮(0.1mg/kg,腹腔注射)联合给药,可促进类抗抑郁作用,并增强海马体中谷氨酰胺合成酶活性和GLT-1免疫含量,但在前额叶皮层中则不然。我们的结果还表明,在呈现类抗抑郁作用的相同方案时间表下,次有效剂量的氯胺酮和鸟苷联合使用,能有效消除谷氨酸对海马体和前额叶皮层切片的诱导损伤。我们的体外结果强化了鸟苷、氯胺酮或次有效浓度的鸟苷加氯胺酮通过调节谷氨酰胺合成酶活性和GLT-1水平来保护免受谷氨酸暴露的观点。最后,分子对接分析表明,鸟苷可能在氯胺酮或甘氨酸/d-丝氨酸共激动剂结合位点与NMDA受体相互作用。这些发现为鸟苷具有类抗抑郁作用这一前提提供了支持,应进一步研究其在抑郁症治疗中的作用。