Suppr超能文献

电化学活化分离高反应性酞菁钴以增强 CO 还原反应。

Isolation of Highly Reactive Cobalt Phthalocyanine via Electrochemical Activation for Enhanced CO Reduction Reaction.

机构信息

Key Laboratory for Ultrafine Materials of Ministry of Education, Shanghai Engineering Research Center of Hierarchical Nanomaterials, School of Materials Science and Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

Key Laboratory for Advanced Materials and Feringa Nobel Prize Scientist Joint Research Center, Institute of Fine Chemicals, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, P. R. China.

出版信息

Small. 2023 Jun;19(23):e2207037. doi: 10.1002/smll.202207037. Epub 2023 Mar 6.

Abstract

Electrochemical CO -to-CO conversion offers an attractive and efficient route to recycle CO greenhouse gas. Molecular catalysts, like CoPc, are proved to be possible replacement for precious metal-based catalysts. These molecules, a combination of metal center and organic ligand molecule, may evolve into single atom structure for enhanced performance; besides, the manipulation of molecules' behavior also plays an important role in mechanism research. Here, in this work, the structure evolution of CoPc molecules is investigated via electrochemical-induced activation process. After numbers of cyclic voltammetry scanning, CoPc molecular crystals become cracked and crumbled, meanwhile the released CoPc molecules migrate to the conductive substrate. Atomic-scale HAADF-STEM proves the migration of CoPc molecules, which is the main reason for the enhancement in CO -to-CO performance. The as-activated CoPc exhibits a maximum FE of 99% in an H-type cell and affords a long-term durability at 100 mA cm for 29.3 h in a membrane electrode assembly reactor. Density-functional theory (DFT) calculation also demonstrates a favorable CO activation energy with such an activated CoPc structure. This work provides a different perspective for understanding molecular catalysts as well as a reliable and universal method for practical utilization.

摘要

电化学 CO 到 CO 的转化为回收 CO 温室气体提供了一种有吸引力和高效的途径。分子催化剂,如 CoPc,已被证明是替代贵金属基催化剂的可行选择。这些分子是金属中心和有机配体分子的组合,可能会演变成单原子结构以提高性能;此外,分子行为的操控在机制研究中也起着重要作用。在这项工作中,通过电化学诱导的激活过程研究了 CoPc 分子的结构演变。经过多次循环伏安扫描后,CoPc 分子晶体破裂和粉碎,同时释放的 CoPc 分子迁移到导电基底上。原子级 HAADF-STEM 证明了 CoPc 分子的迁移,这是 CO 到 CO 性能增强的主要原因。经激活的 CoPc 在 H 型电池中表现出 99%的最大 FE,并在膜电极组件反应器中以 100 mA cm 的电流密度持续运行 29.3 小时。密度泛函理论 (DFT) 计算也表明,这种激活的 CoPc 结构具有有利的 CO 活化能。这项工作为理解分子催化剂提供了一个不同的视角,同时也为实际应用提供了一种可靠且通用的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验