School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
Frontier Research Center for Materials Structure, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.
Langmuir. 2023 Mar 21;39(11):4190-4197. doi: 10.1021/acs.langmuir.3c00254. Epub 2023 Mar 7.
Controlling the optical properties of metal plasma nanomaterials through structure manipulation has attracted great attention for solar steam generation. However, realizing broadband solar absorption for high-efficiency vapor generation is still challenging. In this work, a free-standing ultralight gold film/foam with a hierarchical porous microstructure and high porosity is obtained through controllably etching a designed cold-rolled (NiCoFeCr)Au high-entropy precursor alloy with a unique grain texture. During chemical dealloying, the high-entropy precursor went through anisotropic contraction, resulting in a larger surface area compared with that from the CuAu precursor although the volume shrinkage is similar (over 85%), which is beneficial for the photothermal conversion. The low Au content also results in a special hierarchical lamellar microstructure with both micropores and nanopores within each lamella, which significantly broadens the optical absorption range and makes the optical absorption of the porous film reach 71.1-94.6% between 250 and 2500 nm. In addition, the free-standing nanoporous gold film has excellent hydrophilicity, with the contact angle reaching zero within 2.2 s. Thus, the 28 h dealloyed nanoporous gold film (NPG-28) exhibits a rapid evaporation rate of seawater under 1 kW m light intensity, reaching 1.53 kg m h, and the photothermal conversion efficiency reaches 96.28%. This work demonstrates the enhanced noble metal gold using efficiency and solar thermal conversion efficiency by controlled anisotropic shrinkage and forming a hierarchical porous foam.
通过结构调控来控制金属等离子体纳米材料的光学性质,引起了人们对太阳能蒸汽产生的极大关注。然而,实现宽带太阳能吸收以实现高效蒸汽产生仍然具有挑战性。在这项工作中,通过可控地刻蚀具有独特晶粒结构的设计冷轧(NiCoFeCr)Au 高熵前驱体合金,获得了具有分级多孔微结构和高孔隙率的独立式超轻金膜/泡沫。在化学脱合金过程中,由于高熵前驱体经历各向异性收缩,与 CuAu 前驱体相比,尽管体积收缩相似(超过 85%),但具有更大的表面积,这有利于光热转换。低 Au 含量还导致每个薄片内具有微孔和纳米孔的特殊分级层状微结构,这显著拓宽了光学吸收范围,并使多孔膜的光学吸收在 250nm 至 2500nm 之间达到 71.1%-94.6%。此外,独立式纳米多孔金膜具有优异的亲水性,接触角在 2.2 秒内达到零。因此,在 1kW m 光强度下,经过 28 小时脱合金的纳米多孔金膜(NPG-28)表现出海水的快速蒸发速率,达到 1.53kg m h,光热转换效率达到 96.28%。这项工作展示了通过控制各向异性收缩和形成分级多孔泡沫来提高贵金属金的使用效率和太阳能热转换效率。