Department of Materials Science and Engineering, Tel Aviv University, Ramat Aviv, Tel Aviv 6997801, Israel.
Laboratorio de Microscopías Avanzadas (LMA), Universidad de Zaragoza, 50018 Zaragoza, Spain.
ACS Nano. 2023 Mar 28;17(6):5399-5411. doi: 10.1021/acsnano.2c09754. Epub 2023 Mar 8.
Conventional epitaxy plays a crucial role in current state-of-the art semiconductor technology, as it provides a path for accurate control at the atomic scale of thin films and nanostructures, to be used as the building blocks in nanoelectronics, optoelectronics, sensors, etc. Four decades ago, the terms "van der Waals" (vdW) and "quasi-vdW (Q-vdW) epitaxy" were coined to explain the oriented growth of vdW layers on 2D and 3D substrates, respectively. The major difference with conventional epitaxy is the weaker interaction between the epi-layer and the epi-substrates. Indeed, research on Q-vdW epitaxial growth of transition metal dichalcogenides (TMDCs) has been intense, with oriented growth of atomically thin semiconductors on sapphire being one of the most studied systems. Nonetheless, there are some striking and not yet understood differences in the literature regarding the orientation registry between the epi-layers and epi-substrate and the interface chemistry. Here we study the growth of WS via a sequential exposure of the metal and the chalcogen precursors in a metal-organic chemical vapor deposition (MOCVD) system, introducing a metal-seeding step prior to the growth. The ability to control the delivery of the precursor made it possible to study the formation of a continuous and apparently ordered WO mono- or few-layer at the surface of a -plane sapphire. Such an interfacial layer is shown to strongly influence the subsequent quasi-vdW epitaxial growth of the atomically thin semiconductor layers on sapphire. Hence, here we elucidate an epitaxial growth mechanism and demonstrate the robustness of the metal-seeding approach for the oriented formation of other TMDC layers. This work may enable the rational design of vdW and quasi-vdW epitaxial growth on different material systems.
传统外延在当前最先进的半导体技术中起着至关重要的作用,因为它提供了一种在原子尺度上精确控制薄膜和纳米结构的方法,可作为纳米电子学、光电学、传感器等的构建块。四十年前,“范德华(vdW)”和“准范德华(Q-vdW)外延”这两个术语被创造出来,分别用来解释范德华层在二维和三维衬底上的取向生长。与传统外延的主要区别在于外延层与外延衬底之间的相互作用较弱。事实上,对过渡金属二卤化物(TMDCs)的 Q-vdW 外延生长的研究非常活跃,其中在蓝宝石上取向生长原子薄半导体是研究最多的体系之一。尽管如此,文献中关于外延层和外延衬底之间的取向配准以及界面化学的一些显著且尚未得到理解的差异仍然存在。在这里,我们通过在金属有机化学气相沉积(MOCVD)系统中顺序暴露金属和硫属元素前体来研究 WS 的生长,在生长前引入金属种子步骤。前体传递的控制能力使得研究在 a-平面蓝宝石表面形成连续且明显有序的 WO 单层或少数层成为可能。事实证明,这种界面层强烈影响原子薄半导体层在蓝宝石上的准范德华外延生长。因此,在这里我们阐明了外延生长机制,并证明了金属种子方法对于在不同材料系统上定向形成其他 TMDC 层的稳健性。这项工作可能使 vdW 和 Q-vdW 外延生长在不同的材料系统上的合理设计成为可能。