Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2023 Mar 14;120(11):e2220677120. doi: 10.1073/pnas.2220677120. Epub 2023 Mar 8.
Control over transition metal redox state is essential for metalloprotein function and can be achieved via coordination chemistry and/or sequestration from bulk solvent. Human methylmalonyl-Coenzyme A (CoA) mutase (MCM) catalyzes the isomerization of methylmalonyl-CoA to succinyl-CoA using 5'-deoxyadenosylcobalamin (AdoCbl) as a metallocofactor. During catalysis, the occasional escape of the 5'-deoxyadenosine (dAdo) moiety leaves the cob(II)alamin intermediate stranded and prone to hyperoxidation to hydroxocobalamin, which is recalcitrant to repair. In this study, we have identified the use of bivalent molecular mimicry by ADP, coopting the 5'-deoxyadenosine and diphosphate moieties in the cofactor and substrate, respectively, to protect against cob(II)alamin overoxidation on MCM. Crystallographic and electron paramagnetic resonance (EPR) data reveal that ADP exerts control over the metal oxidation state by inducing a conformational change that seals off solvent access, rather than by switching five-coordinate cob(II)alamin to the more air stable four-coordinate state. Subsequent binding of methylmalonyl-CoA (or CoA) promotes cob(II)alamin off-loading from MCM to adenosyltransferase for repair. This study identifies an unconventional strategy for controlling metal redox state by an abundant metabolite to plug active site access, which is key to preserving and recycling a rare, but essential, metal cofactor.
控制过渡金属氧化还原态对于金属蛋白的功能至关重要,可以通过配位化学和/或与主体溶剂隔离来实现。人甲基丙二酰辅酶 A (CoA) 变位酶 (MCM) 使用 5'-脱氧腺嘌呤核苷酸 (AdoCbl) 作为金属辅因子催化甲基丙二酰辅酶 A 异构化为琥珀酰辅酶 A。在催化过程中,5'-脱氧腺苷部分偶尔逸出,使 cob(II)alamin 中间体搁浅,容易发生羟化,导致羟钴胺素难以修复。在这项研究中,我们已经确定了二价分子模拟物 ADP 的使用,分别利用辅因子和底物中的 5'-脱氧腺苷和二磷酸部分来保护 MCM 上 cob(II)alamin 的过度氧化。晶体学和电子顺磁共振 (EPR) 数据表明,ADP 通过诱导封闭溶剂进入的构象变化来控制金属氧化态,而不是将五配位 cob(II)alamin 转换为更稳定的四配位状态。随后结合甲基丙二酰辅酶 A(或 CoA)促进 cob(II)alamin 从 MCM 卸载到腺苷转移酶进行修复。这项研究确定了一种通过丰富的代谢物控制金属氧化还原态的非传统策略,以堵塞活性位点的进入,这对于保护和回收稀有但必需的金属辅因子至关重要。