Suppr超能文献

氧化还原相关配位化学指导维生素 B 转运。

Redox-Linked Coordination Chemistry Directs Vitamin B Trafficking.

机构信息

Department of Biological Chemistry, Michigan Medicine, University of Michigan, Ann Arbor, Michigan 48109, United States.

出版信息

Acc Chem Res. 2021 Apr 20;54(8):2003-2013. doi: 10.1021/acs.accounts.1c00083. Epub 2021 Apr 2.

Abstract

Metals are partners for an estimated one-third of the proteome and vary in complexity from mononuclear centers to organometallic cofactors. Vitamin B or cobalamin represents the epitome of this complexity and is the product of an assembly line comprising some 30 enzymes. Unable to biosynthesize cobalamin, mammals rely on dietary provision of this essential cofactor, which is needed by just two enzymes, one each in the cytoplasm (methionine synthase) and the mitochondrion (methylmalonyl-CoA mutase). Brilliant clinical genetics studies on patients with inborn errors of cobalamin metabolism spanning several decades had identified at least seven genetic loci in addition to the two encoding B enzymes. While cells are known to house a cadre of chaperones dedicated to metal trafficking pathways that contain metal reactivity and confer targeting specificity, the seemingly supernumerary chaperones in the B pathway had raised obvious questions as to the rationale for their existence.With the discovery of the genes underlying cobalamin disorders, our laboratory has been at the forefront of ascribing functions to B chaperones and elucidating the intricate redox-linked coordination chemistry and protein-linked cofactor conformational dynamics that orchestrate the processing and translocation of cargo along the trafficking pathway. These studies have uncovered novel chemistry that exploits the innate chemical versatility of alkylcobalamins, i.e., the ability to form and dismantle the cobalt-carbon bond using homolytic or heterolytic chemistry. In addition, they have revealed the practical utility of the dimethylbenzimidazole tail, an appendage unique to cobalamins and absent in the structural cousins, porphyrin, chlorin, and corphin, as an instrument for facilitating cofactor transfer between active sites.In this Account, we navigate the chemistry of the B trafficking pathway from its point of entry into cells, through lysosomes, and into the cytoplasm, where incoming cobalamin derivatives with a diversity of upper ligands are denuded by the β-ligand transferase activity of CblC to the common cob(II)alamin intermediate. The broad reaction and lax substrate specificity of CblC also enables conversion of cyanocobalamin (technically, vitamin B, i.e., the form of the cofactor in one-a-day supplements), to cob(II)alamin. CblD then hitches up with CblC via a unique Co-sulfur bond to cob(II)alamin at a bifurcation point, leading to the cytoplasmic methylcobalamin or mitochondrial 5'-deoxyadenosylcobalamin branch. Mutations at loci upstream of the junction point typically affect both branches, leading to homocystinuria and methylmalonic aciduria, whereas mutations in downstream loci lead to one or the other disease. Elucidation of the biochemical penalties associated with individual mutations is providing molecular insights into the clinical data and, in some instances, identifying which cobalamin derivative(s) might be therapeutically beneficial.Our studies on B trafficking are revealing strategies for cofactor sequestration and mobilization from low- to high-affinity and low- to high-coordination-number sites, which in turn are regulated by protein dynamics that constructs ergonomic cofactor binding pockets. While these B lessons might be broadly relevant to other metal trafficking pathways, much remains to be learned. This Account concludes by identifying some of the major gaps and challenges that are needed to complete our understanding of B trafficking.

摘要

金属是大约三分之一蛋白质组的伴侣,其复杂程度从单核中心到有机金属辅因子各不相同。维生素 B 或钴胺素代表了这种复杂性的缩影,是由大约 30 种酶组成的装配线的产物。哺乳动物自身无法合成钴胺素,因此依赖于饮食提供这种必需的辅因子,而只有两种酶需要这种辅因子,一种在细胞质(蛋氨酸合酶)中,另一种在线粒体(甲基丙二酰辅酶 A 变位酶)中。几十年来,对先天性钴胺素代谢错误患者的精彩临床遗传学研究已经确定了至少七个遗传位点,除了编码 B 酶的两个位点之外。尽管细胞中已知存在一组伴侣蛋白,专门用于包含金属反应性并赋予靶向特异性的金属运输途径,但 B 途径中看似多余的伴侣蛋白显然提出了存在的理由。随着导致钴胺素紊乱的基因的发现,我们的实验室一直处于赋予 B 伴侣蛋白功能并阐明复杂的氧化还原相关协调化学和蛋白质连接的辅因子构象动力学的前沿,这些动力学控制着货物沿运输途径的加工和转运。这些研究揭示了新的化学性质,利用了烷基钴胺素固有的化学多功能性,即使用均裂或异裂化学形成和拆解钴-碳键的能力。此外,它们还揭示了二甲基苯并咪唑尾部的实际用途,该尾部是钴胺素独有的,而在结构类似物卟啉、氯卟啉和原卟啉中不存在,作为促进辅因子在活性位点之间转移的工具。在本账目中,我们从进入细胞的 B 运输途径的起点开始,穿过溶酶体,进入细胞质,在那里,带有各种上配体的新进入的钴胺素衍生物通过 CblC 的β-配体转移酶活性被剥夺了常见的 cob(II)alamin 中间体。CblC 的广泛反应和宽松的底物特异性还使氰钴胺素(技术上称为维生素 B,即一日补充剂中的辅因子形式)转化为 cob(II)alamin。然后,CblD 通过独特的 Co-硫键与 CblC 结合,在分叉点处到达 cob(II)alamin,导致细胞质甲基钴胺素或线粒体 5'-脱氧腺苷钴胺素分支。连接点上游基因座的突变通常会影响两个分支,导致高胱氨酸尿症和甲基丙二酸尿症,而下游基因座的突变则导致一种或另一种疾病。阐明与个体突变相关的生化惩罚为我们提供了对临床数据的分子见解,并在某些情况下确定了哪种钴胺素衍生物可能具有治疗益处。我们对 B 运输的研究揭示了从低亲和力和低配位数位点到高亲和力和高配位数位点的辅因子隔离和动员的策略,这反过来又受到构建符合人体工程学的辅因子结合口袋的蛋白质动力学的调节。虽然这些 B 经验可能广泛适用于其他金属运输途径,但仍有许多方面需要了解。本账目的结论部分确定了完成我们对 B 运输理解所需的一些主要差距和挑战。

相似文献

1
Redox-Linked Coordination Chemistry Directs Vitamin B Trafficking.氧化还原相关配位化学指导维生素 B 转运。
Acc Chem Res. 2021 Apr 20;54(8):2003-2013. doi: 10.1021/acs.accounts.1c00083. Epub 2021 Apr 2.
2
Intracellular processing of vitamin B by MMACHC (CblC).MMACHC(CblC)对维生素 B 的细胞内加工。
Vitam Horm. 2022;119:275-298. doi: 10.1016/bs.vh.2022.02.001. Epub 2022 Mar 15.
3
An Interprotein Co-S Coordination Complex in the B-Trafficking Pathway.B 型跨膜运输途径中的一种蛋白质间共配位复合物
J Am Chem Soc. 2020 Sep 23;142(38):16334-16345. doi: 10.1021/jacs.0c06590. Epub 2020 Sep 14.

引用本文的文献

3
Chronic Enteropathy and Vitamins in Dogs.犬类慢性肠病与维生素
Animals (Basel). 2025 Feb 23;15(5):649. doi: 10.3390/ani15050649.

本文引用的文献

3
An Interprotein Co-S Coordination Complex in the B-Trafficking Pathway.B 型跨膜运输途径中的一种蛋白质间共配位复合物
J Am Chem Soc. 2020 Sep 23;142(38):16334-16345. doi: 10.1021/jacs.0c06590. Epub 2020 Sep 14.
4
The human B trafficking protein CblC processes nitrocobalamin.人 B 族维生素转运蛋白 CblC 加工硝钴胺素。
J Biol Chem. 2020 Jul 10;295(28):9630-9640. doi: 10.1074/jbc.RA120.014094. Epub 2020 May 26.
6
Cryo-EM structure of human lysosomal cobalamin exporter ABCD4.人类溶酶体钴胺素转运蛋白ABCD4的冷冻电镜结构
Cell Res. 2019 Dec;29(12):1039-1041. doi: 10.1038/s41422-019-0222-z. Epub 2019 Aug 29.
9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验