Department of Life Sciences, Imperial College London, London, United Kingdom; email:
Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands.
Annu Rev Plant Biol. 2023 May 22;74:225-257. doi: 10.1146/annurev-arplant-070522-062509. Epub 2023 Mar 8.
Photosystem II is the water-oxidizing and O-evolving enzyme of photosynthesis. How and when this remarkable enzyme arose are fundamental questions in the history of life that have remained difficult to answer. Here, recent advances in our understanding of the origin and evolution of photosystem II are reviewed and discussed in detail. The evolution of photosystem II indicates that water oxidation originated early in the history of life, long before the diversification of cyanobacteria and other major groups of prokaryotes, challenging and transforming current paradigms on the evolution of photosynthesis. We show that photosystem II has remained virtually unchanged for billions of years, and yet the nonstop duplication process of the D1 subunit of photosystem II, which controls photochemistry and catalysis, has enabled the enzyme to become adaptable to variable environmental conditions and even to innovate enzymatic functions beyond water oxidation. We suggest that this evolvability can be harnessed to develop novel light-powered enzymes with the capacity to carry out complex multistep oxidative transformations for sustainable biocatalysis.
光系统 II 是光合作用中水氧化和 O 释放的酶。这种非凡的酶是如何以及何时出现的,是生命历史上的基本问题,但一直难以回答。在这里,我们详细回顾和讨论了我们对光系统 II 的起源和进化的理解的最新进展。光系统 II 的进化表明,水氧化的起源早于蓝细菌和其他主要原核生物群的多样化,这对光合作用进化的现有范式提出了挑战并进行了改变。我们表明,数十亿年来,光系统 II 几乎没有变化,但光系统 II 的 D1 亚基的不停复制过程控制着光化学和催化,使该酶能够适应不断变化的环境条件,甚至能够创新超越水氧化的酶功能。我们认为,可以利用这种可进化性来开发新型的光驱动酶,这些酶具有进行复杂多步氧化转化的能力,从而实现可持续的生物催化。