College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China.
Small. 2023 Jun;19(23):e2207421. doi: 10.1002/smll.202207421. Epub 2023 Mar 8.
The well-defined 2D or 3D structure of covalent organic frameworks (COFs) makes it have great potential in photoelectric conversion and ions conduction fields. Herein, a new donor-accepter (D-A) COF material, named PyPz-COF, constructed from electron donor 4,4',4″,4'″-(pyrene-1,3,6,8-tetrayl)tetraaniline and electron accepter 4,4'-(pyrazine-2,5-diyl)dibenzaldehyde with an ordered and stable π-conjugated structure is reported. Interestingly, the introduction of pyrazine ring endows the PyPz-COF a distinct optical, electrochemical, charge-transfer properties, and also brings plentiful CN groups that enrich the proton by hydrogen bonds to enhance the photocatalysis performance. Thus, PyPz-COF exhibits a significantly improved photocatalytic hydrogen generation performance up to 7542 µmol g h with Pt as cocatalyst, also in clear contrast to that of PyTp-COF without pyrazine introduction (1714 µmol g h ). Moreover, the abundant nitrogen sites of the pyrazine ring and the well-defined 1D nanochannels enable the as-prepared COFs to immobilize H PO proton carriers in COFs through hydrogen bond confinement. The resulting material has an impressive proton conduction up to 8.10 × 10 S cm at 353 K, 98% RH. This work will inspire the design and synthesis of COF-based materials with both efficient photocatalysis and proton conduction performance in the future.
共价有机框架(COFs)具有明确的 2D 或 3D 结构,使其在光电转换和离子传导领域具有巨大的潜力。在此,报道了一种新的给体-受体(D-A)COF 材料 PyPz-COF,由电子给体 4,4',4″,4'″-(芘-1,3,6,8-四酰基)四苯胺和电子受体 4,4'-(吡嗪-2,5-二基)二苯甲醛构建而成,具有有序稳定的π共轭结构。有趣的是,引入吡嗪环赋予了 PyPz-COF 独特的光学、电化学和电荷转移特性,并且还带来了丰富的 CN 基团,通过氢键丰富质子,从而提高了光催化性能。因此,PyPz-COF 在引入 Pt 作为共催化剂时表现出显著提高的光催化制氢性能,高达 7542 μmol g h ,与没有引入吡嗪的 PyTp-COF(1714 μmol g h )相比有明显的提高。此外,吡嗪环丰富的氮位和明确的 1D 纳米通道使所制备的 COFs 能够通过氢键限制将 H PO 质子载体固定在 COFs 中。所得材料在 353 K、98% RH 下具有高达 8.10×10 S cm 的惊人质子传导率。这项工作将激发未来具有高效光催化和质子传导性能的 COF 基材料的设计和合成。