Suppr超能文献

基于重症超声检查加动脉血气分析算法诊断急性呼吸衰竭病因的准确性

Accuracy of Critical Care Ultrasonography Plus Arterial Blood Gas Analysis Based Algorithm in Diagnosing Aetiology of Acute Respiratory Failure.

作者信息

Panda Rajesh, Saigal Saurabh, Joshi Rajnish, Pakhare Abhijit, Joshi Ankur, Sharma Jai Prakash, Tandon Sahil

机构信息

All India Institute of Medical Science - Bhopal, Madhya Pradesh, India.

出版信息

J Crit Care Med (Targu Mures). 2023 Feb 8;9(1):20-29. doi: 10.2478/jccm-2023-0006. eCollection 2023 Jan.

Abstract

INTRODUCTION

Lung ultrasound when used in isolation, usually misses out metabolic causes of dyspnoea and differentiating acute exacerbation of COPD from pneumonia and pulmonary embolism is difficult, hence we thought of combining critical care ultrasonography (CCUS) with arterial blood gas analysis (ABG).

AIM OF THE STUDY

The objective of this study was to estimate accuracy of Critical Care Ultrasonography (CCUS) plus Arterial blood gas (ABG) based algorithm in diagnosing aetiology of dyspnoea. Accuracy of traditional Chest X-ray (CxR) based algorithm was also validated in the following setting.

METHODS

It was a facility based comparative study, where 174 dyspneic patients were subjected to CCUS plus ABG and CxR based algorithms on admission to ICU. The patients were classified into one of five pathophysiological diagnosis 1) Alveolar( Lung-pneumonia)disorder ; 2) Alveolar (Cardiac-pulmonary edema) disorder; 3) Ventilation with Alveolar defect (COPD) disorder ;4) Perfusion disorder; and 5) Metabolic disorder. We calculated diagnostic test properties of CCUS plus ABG and CXR based algorithm in relation to composite diagnosis and correlated these algorithms for each of the defined pathophysiological diagnosis.

RESULTS

The sensitivity of CCUS and ABG based algorithm was 0.85 (95% CI-75.03-92.03) for alveolar (lung) ; 0.94 (95% CI-85.15-98.13) for alveolar (cardiac); 0.83 (95% CI-60.78-94.16) for ventilation with alveolar defect; 0.66 (95% CI-30-90.32) for perfusion defect; 0.63 (95% CI-45.25-77.07) for metabolic disorders.Cohn's kappa correlation coefficient of CCUS plus ABG based algorithm in relation to composite diagnosis was 0.7 for alveolar (lung), 0.85 for alveolar (cardiac), 0.78 for ventilation with alveolar defect, 0.79 for perfusion defect and 0.69 for metabolic disorders.

CONCLUSION

CCUS plus ABG algorithm is highly sensitive and it's agreement with composite diagnosis is far superior. It is a first of it's kind study, where authors have attempted combining two point of care tests and creating an algorithmic approach for timely diagnosis and intervention.

摘要

引言

单独使用肺部超声时,通常会遗漏呼吸困难的代谢原因,而且很难区分慢性阻塞性肺疾病(COPD)急性加重与肺炎和肺栓塞,因此我们考虑将重症超声检查(CCUS)与动脉血气分析(ABG)相结合。

研究目的

本研究的目的是评估基于重症超声检查(CCUS)加动脉血气(ABG)的算法在诊断呼吸困难病因方面的准确性。在以下情况下,还验证了基于传统胸部X线(CxR)的算法的准确性。

方法

这是一项基于机构的比较研究,174例呼吸困难患者在入住重症监护病房(ICU)时接受了基于CCUS加ABG和CxR的算法检查。患者被分为五种病理生理诊断之一:1)肺泡性(肺部-肺炎)疾病;2)肺泡性(心脏-肺水肿)疾病;3)伴有肺泡缺陷的通气(COPD)疾病;4)灌注障碍;5)代谢障碍。我们计算了基于CCUS加ABG和CXR的算法相对于综合诊断的诊断测试特性,并将这些算法与每种定义的病理生理诊断进行关联。

结果

基于CCUS和ABG的算法对肺泡性(肺部)疾病的敏感性为0.85(95%可信区间-75.03-92.03);对肺泡性(心脏)疾病的敏感性为0.94(95%可信区间-85.15-98.13);对伴有肺泡缺陷的通气疾病的敏感性为0.83(95%可信区间-60.78-94.16);对灌注缺陷的敏感性为0.66(95%可信区间-30-90.32);对代谢障碍的敏感性为0.63(95%可信区间-45.25-77.07)。基于CCUS加ABG的算法与综合诊断的科恩kappa相关系数,对肺泡性(肺部)疾病为0.7,对肺泡性(心脏)疾病为0.85,对伴有肺泡缺陷的通气疾病为0.78,对灌注缺陷为0.79,对代谢障碍为0.69。

结论

CCUS加ABG算法具有高度敏感性,并且它与综合诊断之间的一致性要优越得多。这是同类研究中的首例,作者尝试将两种床旁检查相结合,并创建一种算法方法以进行及时诊断和干预。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8f80/9987272/36cd6b7c0f58/jccm-09-020-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验